主要内容
二叉搜索树
题目
669. 修剪二叉搜索树
思路分析
对根结点
r
o
o
t
root
root 进行深度优先遍历。
对于当前访问的结点,如果结点为空结点,直接返回空结点;
如果结点的值小于
l
o
w
low
low,那么说明该结点及它的左子树都不符合要求,我们返回对它的右结点进行修剪后的结果;
如果结点的值大于
h
i
g
h
high
high,那么说明该结点及它的右子树都不符合要求,我们返回对它的左子树进行修剪后的结果;
如果结点的值位于区间
[
l
o
w
,
h
i
g
h
]
[low,high]
[low,high],我们将结点的左结点设为对它的左子树修剪后的结果,右结点设为对它的右子树进行修剪后的结果。
代码
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root:
return root
if root.val < low:
# 找到符合条件的右孩子
return self.trimBST(root.right, low, high)
if root.val > high:
# 找到符合条件的左孩子
return self.trimBST(root.left, low, high)
# 值在区间中,处理左右子树
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root
108. 将有序数组转换为二叉搜索树
思路分析
找中点,左右找
不新建数组,用索引
代码
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
n = len(nums)
if n == 0:
return None
root = TreeNode(nums[n//2])
root.left = self.sortedArrayToBST(nums[0:n//2])
root.right = self.sortedArrayToBST(nums[n//2+1:])
return root
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
def _traversal(nums, left, right):
# 左闭右闭
if left > right:
return None
mid = left + (right - left) // 2
root = TreeNode(nums[mid])
root.left = _traversal(nums, left, mid - 1)
root.right = _traversal(nums, mid + 1, right)
return root
return _traversal(nums,0,len(nums)-1)
538. 把二叉搜索树转换为累加树
思路分析
右中左遍历相加,记录前一个数值
代码
class Solution:
def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
# 右中左遍历相加
pre = 0
def _traversal(root):
nonlocal pre
if not root:
return
# 右
_traversal(root.right)
root.val += pre
pre = root.val
_traversal(root.left)
_traversal(root)
return root