自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 ICCV2019 | 目标检测论文阅读 Clustered Object Detection in Aerial Images

目标检测 | Clustered Object Detection in Aerial Images论文阅读一、背景介绍二、网络结构2.1 总体框架2.2 Cluster Region Extraction2.2.1 CPNet2.2.2 ICM2.3 Fine Detection on Cl...

2019-12-04 13:46:27

阅读数 116

评论数 2

原创 记录跑通CenterNet的demo.py

第一次跑模型的代码,就需要首先跑通作者原来的代码,再修改成自己的数据集进行训练。 所以!第一步!根据作者的Readme跑代码的时候,就遇到了下面的报错。查了百度也没有找到问题! 报错: torch.jit.frontend.NotSupportedError: slicing multiple ...

2019-12-01 12:03:21

阅读数 255

评论数 0

原创 ICCV2019 | 目标检测论文阅读 SCRDet:Towards More Robust Detection for Small, Cluttered and Rotated Objects

ICCV2019|论文阅读 SCRDet:Towards More Robust Detection for Small, Cluttered and Rotated Objects 前言 论文地址:https://arxiv.org/abs/1811.07126 开源代码:https:...

2019-11-16 16:37:36

阅读数 390

评论数 2

原创 复现SCRDet:Towards More Robust Detection for Small, Cluttered and Rotated Objects(ICCV2019)遇到的问题及解决方案

复现SCRDet网络遇到的问题及解决方案 问题一、OutOfRangeError (see above for traceback) 可能的原因有:数据为空(出问题)或者局部变量没有初始化,初始化局部变量。 一般这种问题都不是代码的问题,请先检查训练数据: \1. 训练数据中图像文件和标注文件数...

2020-02-08 11:11:36

阅读数 88

评论数 0

原创 用CenterNet跑通VisDrone数据集(python、ubuntu)

使用CenterNet跑通VisDrone数据集一、Visdrone数据集转成coco格式(txt-->xml-->json)第一步:把VisDrone的txt标注格式转换成Voc的xml格式第二步,检验一下所转换的xml格式画回原图中是否准确第三步,将xml格式转换成json格式 一...

2020-02-07 15:49:35

阅读数 43

评论数 0

原创 DOTA数据集测试结果画回原图

将DOTA测试结果画回原图中 STEP1: 将json格式转为txt格式 import json f = open("../output/vgg16/coco_2014_minival/default/vgg16_faster_rcnn_iter_190000/detectio...

2019-11-24 08:31:39

阅读数 42

评论数 0

原创 八、【机器学习作业】K-means聚类 & 降维PCA(python版ex7)

K-means聚类 & 降维PCA(一)K-均值聚类 K-means Clustering(1)运行K-均值 Implementing K-means(2)在数据集上使用K-均值 K-means on example dataset(3)随机初始化 Random initializatio...

2019-08-27 16:21:48

阅读数 61

评论数 0

原创 【机器学习笔记】无监督学习(K-means聚类 & 降维PCA)

无监督学习(K-means聚类 & 降维PCA)(一)(1)(2) (一) (1) (2)

2019-08-22 19:18:48

阅读数 225

评论数 0

原创 七、【机器学习作业】支持向量机SVM(python版ex6)

支持向量机SVM

2019-08-17 09:06:18

阅读数 148

评论数 0

原创 【机器学习笔记】支持向量机(概念+基本原理+核函数)

支持向量机

2019-08-13 21:12:06

阅读数 199

评论数 1

原创 【机器学习笔记】神经网络反向传播算法 推导

神经网络反向传播算法 推导(一) 概念及基本思想(二)信息的前向传播(三)误差反向传播(1)输出层的权重参数更新(2)隐藏层的权重参数更新(3)输出层与隐藏层的偏置参数更新(4)反向传播算法的4个核心公式(5)BP算法计算:某个训练数据的代价函数对参数的偏导数(6)总结:用“梯度下降”算法更新参数...

2019-08-11 16:00:10

阅读数 70

评论数 0

原创 六、【机器学习作业】正则化线性回归和偏差\方差(python版ex5)

正则化线性回归和偏差\方差(ex5)(一)正则化线性回归 Regularized Linear Regression(1)可视化数据集 Visualizing the dataset(2)正则化线性回归代价函数 Regularized linear regression cost function...

2019-08-07 10:53:44

阅读数 145

评论数 0

原创 【CSDN笔记】数学公式对齐

$$\begin{aligned} a &=b+c+d \\ &=e+f+g \end{aligned}$$ a=b+c+d=e+f+g\begin{aligned} a &=b+c+d \\ &=e+f+g \end{al...

2019-08-06 18:23:45

阅读数 177

评论数 0

原创 五、【机器学习作业】反向传播的神经网络(python版ex4)

反向传播的神经网络(ex4)(一)神经网路 Neural Networks(1)可视化数据集 Visualizing the data(2)模型表示 Model Representation(1)读取数据(2)读取权重(3)计算参数(二)反向传播(三)可视化隐藏层 在这篇博客中,使用的例子依然是...

2019-08-06 09:03:13

阅读数 116

评论数 0

原创 【机器学习笔记】训练并优化神经网络的步骤

训练并优化神经网络的步骤 选择网络结构,即决定选择多少层以及决定每层分别有多少个单元。 第一层的单元数即训练集的特征数量。最后一层的单元数是训练集的结果的类的数量。 如果隐藏层数大于1,确保每个隐藏层的单元个数相同,通常情况下隐藏层单元的个数越多越好。 真正要决定的是隐藏层的层数和每个中间层的单元...

2019-08-03 17:54:10

阅读数 62

评论数 0

原创 【机器学习笔记】如何使用机器学习解决问题

如何使用机器学习解决问题定义问题:收集数据集对数据进行预处理算法(模型)的选择对结果进行优化(评估算法) 要用机器学习来解决问题,一般的步骤为: 定义问题:收集数据集 对数据进行预处理 算法(模型)的选择 对结果进行优化(评估) 定义问题:收集数据集 收集问题资料,深入理解问题,然后将问题...

2019-08-03 13:50:20

阅读数 37

评论数 0

原创 四、【机器学习作业】多元分类与神经网络(python版ex3)

神经网络(一)神经网络模型(1) 简单模型 vs 复杂模型(2)神经网络模型(二)神经网络的分类与学习方法(三) 学习完了机器学习的神经网络课程,现在来将所学记录下来。 (一)神经网络模型 (1) 简单模型 vs 复杂模型 简单模型,其优点是容易理解、可解释性较强,但是为了达到相对好的预测效果,我...

2019-08-03 11:45:55

阅读数 136

评论数 0

原创 二、【机器学习作业】多变量线性回归算法(python版ex1)

多变量线性回归算法多变量线性回归算法(Linear Regression with multiple variables)(1) 多维特征 & 多变量梯度下降(2)特征缩放(Feature Scaling)(3)学习率(Learning rate)(4)正规方程(Normal equati...

2019-07-31 11:33:04

阅读数 120

评论数 0

原创 三、【机器学习作业】逻辑(Logistic)回归算法 & 正则化(python版ex2)

逻辑(Logistic)回归算法 & 正则化(1)Logistic回归算法模型(2)公式推导(3)多元分类:一对多(4)正则化(5)python代码实现——logistic回归算法作业 学习完了机器学习的逻辑回归课程,现在来将所学记录下来。 (1)Logistic回归算法模型 概念: 逻辑...

2019-07-30 20:23:41

阅读数 102

评论数 0

原创 一、【机器学习作业】单变量线性回归算法(python版ex1)

线性回归算法(一)什么是机器学习?(二)线性回归算法(1)代价函数 Cost Function(2)梯度下降算法 Gradient Descent (一)什么是机器学习? 概念: 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说, 机...

2019-07-18 19:07:42

阅读数 90

评论数 0

原创 【机器学习笔记】有监督学习和无监督学习

有监督学习和无监督学习(一)有监督学习(二)无监督学习(三)二者的区别(四)如何在两者中选择合适的方法 (一)有监督学习 概念: 通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现预测和分类的目的,也就具有了对未知数据进行预测和分类的...

2019-07-17 17:28:22

阅读数 463

评论数 0

原创 十、python计算机视觉编程之OPENCV

OPENCV(一)OpenCV 的 Python 接口(二)OpenCV 基础知识(1)读取和写入图像(2)颜色空间(3) 显示图像及结果(三)处理视频(1)视频输入(2)将视频读取到 NumPy 数组中(四)跟踪(1)光流(2)Lucas-Kanade算法(五)更多示例(1)图像修复(2)利用分...

2019-07-15 16:11:39

阅读数 111

评论数 0

原创 九、python计算机视觉编程之图像分割

图像分割(一)图割(Graph Cut)(1)从图像创建图(2)用户交互式分割(二)利用聚变进行分割(三)变分法 图像分割在数字图像处理时也提到过,图像分割是将一幅图像分割成有意义区域的过程。 这些区域可以是图像的前景和背景或者图像中一些单独的对象。这些区域可以利用一些诸如颜色、边界或近邻相似性等...

2019-07-14 18:43:00

阅读数 235

评论数 0

原创 计算机视觉实验中遇到的错误及解决方案

错误一:ModuleNotFoundError: No module named ‘imtools’ 解决:找到imtools.py文件添加到项目的工程文件夹下即可。 即,添加from PCV.tools import imtools

2019-07-14 18:30:54

阅读数 142

评论数 0

原创 八、python计算机视觉编程之图像内容分类

图像内容分类(一)K邻近分类法(KNN)(1)一个简单的二维示例(2)用稠密SIFT作为图像特征(3)图像分类:手势识别(二)贝叶斯分类器(三)支持向量机(1)使用LibSVM(2)再论手势识别(四)光学字符识别(1)训练分类器(2)选取特征(3)多类支持向量机(4)提取单元格并识别字符(5)图像...

2019-07-09 17:00:12

阅读数 127

评论数 0

原创 七、python计算机视觉编程之图像搜索

图像搜索(一)基于内容的图像检索(二)视觉单词(三)图像索引(1)建立数据库(2)添加图像(四)在数据库中搜索图像(1)利用索引获取候选图像(2)用一幅图像进行查询(3)确定对比基准并绘制结果(五)使用几何特性对结果排序(六)建立演示程序及Web应用(1)用CherryPy创建web应用(2)图像...

2019-07-04 10:47:01

阅读数 88

评论数 0

原创 六、python计算机视觉编程之图像聚类

图像聚类(一)K-means聚类(1)Scipy聚类包(2)图像聚类(3)在主成分上可视化图像(4)像素聚类(二)层次聚类(三)谱聚类 (一)K-means聚类 (1)Scipy聚类包 (2)图像聚类 (3)在主成分上可视化图像 (4)像素聚类 (二)层次聚类 (三)谱聚类 ....

2019-07-02 17:45:41

阅读数 365

评论数 6

原创 五、python计算机视觉编程之多视图几何

多视图几何(一)外极几何(1)一个简单的数据集(2)用matplotlib绘制三维数据(3)计算F:八点法(4)外极点和外极线(二)照相机和三维结构的计算(1)三角剖分(2)由三维点计算照相机矩阵(3)由基础矩阵计算照相机矩阵(三)多视图重建(1)稳健估计基础矩阵(2)三维重建示例(3)多视图的扩...

2019-06-20 17:45:22

阅读数 170

评论数 0

原创 四、python计算机视觉编程之照相机模型与增强现实

照相机模型与增强现实(一)针孔照相机模型(1)照相机矩阵(2)三维点的投影(3)照相机矩阵的分解(4)计算照相机中心(二)照相机标定(三)以平面和标记物进行姿态估计(四)增强现实(1)PyGame和PyOpenGL(2)从照相机矩阵到OpenGL格式(3)在图像中放置虚拟物体(4)综合集成(5)载...

2019-06-15 09:10:01

阅读数 2517

评论数 0

原创 三、python计算机视觉编程之图像到图像的映射

图像到图像的映射(一)单应性变换(1)直接线性变换算法(2)仿射变换(affine)(二)图像扭曲(1)图像中的图像(2)分段仿射扭曲(3)图像配准(三)创建全景图(1)RANSAC(2)稳健的单应性矩阵估计(3)拼接图像 (一)单应性变换 概念: 单应性变换时将一个平面内的点映射到另一个平...

2019-06-12 12:29:10

阅读数 175

评论数 0

原创 二、python计算机视觉编程之局部图像描述子

局部图像描述子

2019-06-03 10:47:27

阅读数 208

评论数 0

原创 一、python计算机视觉编程之基本的图像操作和处理

基本的图像操作和处理

2019-05-22 09:31:26

阅读数 160

评论数 0

原创 十七、数字图像处理之表示与描述

图像处理的表示与描述(一)背景知识(1)用于提取区域及其边界的函数(2)本章使用的MATLAB和IPT附加函数(3)一些基本的实用M-函数(二)表示(1)链码(2)使用最小周长多边形的多边形近似(3)标记(4)边界片段(5)骨骼(三)边界描述子(1)一些简单的描述子(2)形状数(3)傅里叶描述子(...

2019-05-15 09:39:10

阅读数 1852

评论数 1

原创 十六、数字图像处理之图像分割

图像分割(一)点、线和边缘检测(1)点检测(2)线检测(3)使用函数edge的边缘检测(二)使用霍夫变换的线检测(三)阈值处理(1)基础知识(2)基本全局阈值处理(3)使用Otsu's方法的最佳全局阈值处理(4)使用图像平滑改进全局阈值处理(5)使用边缘改进全局阈值处理(6)基于局部统计...

2019-05-13 09:13:18

阅读数 3195

评论数 9

原创 十五、数字图像处理之形态学图像处理

形态学图像处理(一)基础知识(1)集合论中的基本概念(2)二值图像、集合及逻辑算子(二)膨胀与腐蚀(1)膨胀(2)结构元的分解(3)strel函数(4)腐蚀(三)膨胀与腐蚀的结合(1)开操作和闭操作(2)击中和或击不中变换(3)运用查询表(4)bwmorph函数(四)标记连通分量(五)形态学重建(...

2019-05-10 11:21:04

阅读数 1822

评论数 0

原创 十四、数字图像处理之图像压缩

(一)概念 图像压缩就是减少表示数字图像时需要的数据量,是通过去除一个或三个基本数据冗余来得到的。主要有三类,分别是编码冗余、空间或/和时间冗余、不相干冗余。 图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或...

2019-05-08 09:27:32

阅读数 2484

评论数 0

原创 十三、数字图像处理之小波基础

小波(一)小波概念(二)快速小波变换FWT(1)使用小波工具箱的FWT(2)不使用小波工具箱的FWT(三)快速小波反变换(四)小波分解结构的处理(1)不使用小波工具箱编辑小波分解系数(2)显示小波分解系数(五)图像中的小波运用 (一)小波概念 小波变换(wavelet transform,WT...

2019-05-05 11:23:30

阅读数 3152

评论数 0

原创 十二、数字图像处理之彩色图像处理

说明:在彩色空间中,彩色图像用RGB图像和索引图像进行处理。 (一)在MATLAB中彩色图像的表示 (1)RGB图像 一幅RGB图像就是M×N×3大小的彩色像素的数组,每个彩色像素点都是在特定空间位置的成彩色图像所对应的红绿蓝分量。也可以将它们看做由三个灰度图像形成的“堆栈”,当发送到彩色监...

2019-04-29 08:36:55

阅读数 248

评论数 0

原创 十一、数字图像处理之几何变换(2)

数字图像处理之几何变换(2)(一)Matlab中的图像坐标系统(1)输出图像位置(2)控制输出网格(二)图像内插(1)二维内插(2)内插方法的比较 (一)Matlab中的图像坐标系统 在考虑几何变换的其他情况之前,首先要用matlab显示图像坐标。开启标记的一种方法是在调用imshow之后调用...

2019-04-24 14:44:45

阅读数 298

评论数 0

原创 十、数字图像处理之几何变换(1)

数字图像处理之几何变换(一)点变换(坐标映射)(1)概念(2)函数maketform(3)函数pointgrid和函数vistform(二)仿射变换(1)概念(2)代码(三)投射变换(四)应用于图像的几何变换(五)常用的几何变换 说明: 几何变换改变了图像中像素间的空间关系,比如可以放大和缩小...

2019-04-22 09:09:11

阅读数 196

评论数 0

提示
确定要删除当前文章?
取消 删除