数据分析师需要经常从数据库中取数据进行分析,MySQL数据库是较为常用的关系型数据库,python是目前火热的数据分析语言,在python中,利用第三方库直接对数据库进行操作,包括数据的读取和写入等,能极大提高数据分析师的工作效率。本文介绍利用PyMySQL和SQLAlchemy两个python库对MySQL数据库进行读写操作。
1 软件版本
- Win10 64bit
- Python 3.8
- PyCharm 2019.3.4
- PyMySQL 0.9.3
- SQLAlchemy 1.3.16
2 安装库
需要安装PyMySQL
和SQLAlchemy
两个库,在终端中用pip
命令进行安装,如下:
pip install PyMySQL
pip install SQLAlchemy
3 PyMySQL读写数据库
脚本如下:
import pymysql
import pandas as pd
if __name__ == '__main__':
# 创建数据库连接(需要修改)
con = pymysql.connect(host='xxx',
port=3306,
user='xxx',
password='xxx',
db='xxx',
charset="utf8")
try:
# 创建游标(默认数据返回tuple,修改为dict)
cur = con.cursor(cursor=pymysql.cursors.DictCursor)
# 读取表
get_sql = "select * from tb_newCity" # sql语句
cur.execute(get_sql) # 执行sql语句
get_df = pd.DataFrame(cur.fetchall()) # 获取结果转为dataframe
print(get_df)
# 创建表
create_sql = 'create table if not exists new(id int,value double)'
cur.execute(create_sql)
# 写入表(数据库中必须存在该表)
df = pd.DataFrame({'id': [1, 2], 'value': [12, 13]})
insert_sql = 'insert into new (id,value) values (%s,%s)' # %s占位符
# 1.循环执行
for i in range(df.__len__()):
# 插入的数据类型需要与数据库中字段类型保持一致
cur.execute(insert_sql, (int(df.iloc[i, 0]), float(df.iloc[i, 1])))
# 2.批量执行
cur.executemany(insert_sql, [df.iloc[0].to_list(), df.iloc[1].to_list()])
# 提交所有执行命令
con.commit()
print('数据写入成功!')
cur.close() # 关闭游标
except Exception as e:
raise e
finally:
con.close() # 关闭连接
注意点:
- 连接及游标:
- 创建数据库连接时,需要根据实际情况修改主机
host
、端口port
,用户名user
,密码password
,数据库db
参数。 - 端口
port
默认值是3306,设置charset
为utf8
,解决读取中文问题。 - 默认游标返回的查询数据格式是
tuple
,通过修改游标类型可以控制返回数据格式。
- 读取表:
- 用游标
cur
的execute()
方法运行sql语句完成表的读取。 - 调用游标
cur
的fetchall()
方法可以获取全部的查询数据。此外,fetchone()
方法获取第一条数据,fetchmany(n)
方法获取前n条数据。
- 写入表:
- 写入表时,需要保证数据库中存在该表,可以先创建该表。
- 用sql语句完成写入表的操作,sql语句中可以先用
%s
表示占位符,在执行语句中再用具体值替换。 - pandas的dataframe类型数据写入数据库中,可以用循环
execute()
或采用executemany()
实现。 - 写入数据库中的数据必须与数据库中定义的字段类型保持一致,不一致时可以进行转换。
- 创建表和写入表操作,需要最后用
commit()
方法提交,才算完成操作。
运行脚本,输出如下:
4 SQLAlchemy读写数据库
脚本如下:
from sqlalchemy import create_engine
import pandas as pd
if __name__ == '__main__':
try:
# 创建数据库引擎
con = create_engine("mysql+pymysql://user:password@host:port/db")
# 读取表
sql = 'select * from t_json' # sql语句
get_df = pd.read_sql_query(sql, con) # 结果为dataframe
print(get_df)
# 写入表
df = pd.DataFrame({'id': [1, 2], 'value': [12, 13]})
df.to_sql('new', con, if_exists='append', index=False)
print('数据写入成功!')
except Exception as e:
raise e
注意点:
-
创建数据库引擎
con
时,需要根据实际情况修改主机host
、端口port
,用户名user
,密码password
,数据库db
参数。 -
调用pandas的
read_sql_query
方法运行sql语句完成表的读取。 -
pandas的dataframe对象可以直接写入数据库,调用
to_sql
方法即可,数据库中无该表时,会自动创建表,无需先建表。其中的if_exists
参数控制写入行为,具体解释如下:if_exists 参数解释 fail 存在表,则报错 replace 存在表,则替换原表 append 存在表,则在原表行末追加
运行脚本,输出如下:
5 常见报错
-
Access denied for user…
原因:MySQL配置参数出错
解决办法:检查user,password,host,port,db等参数的设置,用其他工具测试mysql连接是否成功,做对比检查。 -
pymysql.err.InterfaceError…
原因:使用PyMySQL时,关闭了创建的连接,对游标操作产生
解决办法:重新创建连接,游标,再对游标进行操作。 -
AtrributeError: numpy.int64 object has…
原因:使用PyMySQL时,python里定义的数据类型mysql不支持
解决办法:对数据进行类型转换,参考第三章的脚本。
6 总结
PyMySQL和SQLAlchemy是两个常见的python操作MySQL工具,但从数据分析角度出发,数据分析师基本的数据库操作就是读写。就数据库的读写方面而言,SQLAlchemy库的优势更明显,操作简单,取与pandas的dataframe之间的转换更为容易,python做数据分析推荐用SQLAlchemy库去完成MySQL的读写操作。