详解OpenVINO 模型库中的人脸检测模型

图像处理 专栏收录该内容
131 篇文章 49 订阅

人脸检测模型

OpenVINO的模型库中有多个人脸检测模型,这些模型分别支持不同场景与不同分辨率的人脸检测,同时检测精度与速度也不同。下面以OpenVINO2020 R04版本为例来逐一解释模型库中的人脸检测,列表如下:
在这里插入图片描述从列表中可以看出骨干特征网络主要是MobileNetv2与SqueezeNet两种支持实时特征网络,ResNet152是高精度的特征网络,检测头分别支持SSD、FCOS、ATSS。
MobileNetv2版本的模型结构
深度可分离卷积
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ResNet网络
残差网络模型在2015年提出,OpenCV从3.3版本开始支持,相关的论文如下:

https://arxiv.org/pdf/1512.03385.pdf

在这里插入图片描述
SqueezeNet网络
该模型与MobileNet网络都是支持移动端/端侧可部署的模型,2016提出,相关论文如下:

https://arxiv.org/pdf/1602.07360.pdf

模型结构
在这里插入图片描述
检测模型
根据不同的检测头,组合生成不同的对象检测模型,这里三种常见的检测模型:
SSD检测
SSD论文中给出的是基于VGG-16作为backbone网络的,替换VGG为MobileNetV2,然后从第12个权重层开始提取特征到第14或者15个权重层,针对anchor预测与类别预测完成回归与分类损失计算,实现对象检测模型训练。
在这里插入图片描述
FCOS检测
跟YOLOv1相似是一个anchor-free的网络模型
在这里插入图片描述
多了一个中心输出来压制低质量的bounding box输出。
ATSS
ATSS的全称是自适应训练样本选择,
在这里插入图片描述
作者首先对比了RetinaNet与FCOS两种对象检测方法,发现对象检测在回归阶段的本质问题是如何选择正负样本,解决样本不平衡性问题,从而提出了一种新的正负样本选择定义方法-自适应训练样本选择(ATSS)。流程如下:
在这里插入图片描述
该方法可以获得更好的对象检测精度与mAP,适用RetinaNet与FCOS等对象检测网络。实际实验数据对比:
在这里插入图片描述
实验对比:
上面的OpenVINO的人脸检测模型列表中,MobileNetv2 + SSD/FCOS适用于速度优先,不同分辨率的场景,ResNet152 + ATSS是OpenVINO模型库中的精度最高的人脸检测预训练模型。下面我们就通过代码分别测试FCOS与ATSS两种检测模型的检测效果比较,针对同一张测试人脸图像,图示如下:
在这里插入图片描述
统一调整阈值为0.25,推理时间与检测人脸总数的对比图如下:
在这里插入图片描述
最终分别得到测试图像如下:
在这里插入图片描述
在这里插入图片描述
欢迎关注我的微信公众号【OpenCV学堂】,获取更多干货!

  • 1
    点赞
  • 2
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> <span></span> </p> <p> 手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。<br /> 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。<br /><br /> 基本提纲:<br /> 1、课程综述、环境配置<br /> 2、OpenVINO范例-超分辨率(super_resolution_demo)<br /> 3、OpenVINO范例-道路分割(segmentation_demo)<br /> 4、OpenVINO范例-汽车识别(security_barrier_camera_demo)<br /> 5、OpenVINO范例-人脸识别(interactive_face_detection_demo)<br /> 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo)<br /> 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo)<br /> 8、NCS和GOMFCTEMPLATE<br /> 9、课程小结,资源分享 </p>
©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值