DP动态规划初步,01背包

https://www.acwing.com/problem/content/description/2/icon-default.png?t=N7T8https://www.acwing.com/problem/content/description/2/

原题链接

题目描述

有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

8

 dfs(记忆化搜索)

#include <iostream>
using namespace std;
int n,v;
int wi[1010],vi[1010];
int mem[1010][1010];

int dfs(int x,int cnt)
{
	if(mem[x][cnt]) return mem[x][cnt];
	int sum=0;
	if(x>n) return 0;
	else
	{
		if(cnt<vi[x]) sum=dfs(x+1,cnt); 
		else if(cnt>=vi[x])
		    sum=max(dfs(x+1,cnt),dfs(x+1,cnt-vi[x])+wi[x]);
    }
	mem[x][cnt]=sum;
	return sum;
}

int main()
{
	scanf("%d %d",&n,&v);
	for(int i=1;i<=n;i++)
	{
		scanf("%d %d",&vi[i],&wi[i]);
	}
	int res=dfs(1,v);
	cout<<res;
	return 0;
} 

二维数组的dp(倒序)

#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011][1011];

int main()
{
	cin>>n>>v;
	for(int i=1;i<=n;i++)
	{
		cin>>vi[i]>>wi[i];
	}
	for(int i=n;i>=1;i--)
	{
		for(int j=0;j<=v;j++)
		{
			if(j<vi[i]) f[i][j]=f[i+1][j];
			else if(j>=vi[i])
			{
				f[i][j]=max(f[i+1][j],f[i+1][j-vi[i]]+wi[i]);
			}
		}
	}
	cout<<f[1][v];
	return 0;
} 

二维数组的dp(正序)

#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011][1011];

int main()
{
	cin>>n>>v;
	for(int i=1;i<=n;i++)
	{
		cin>>vi[i]>>wi[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=v;j++)
		{
			if(j<vi[i]) f[i][j]=f[i-1][j];
			else if(j>=vi[i])
			{
				f[i][j]=max(f[i-1][j],f[i-1][j-vi[i]]+wi[i]);
			}
		}
	}
	cout<<f[n][v];
	return 0;
} 

一维数组的dp(优化空间,大概7倍的变化)

重点:

第二个for循环要倒序,因为j-vi[i]小于j,更新f[j]时所用的就是上一层的数据,如果正序的话,更新f[j]就有可能是用本层前面的数据更新后面的数据,也就相当于每个物品选两次。
#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011];

int main()
{
	cin>>n>>v;
	for(int i=1;i<=n;i++)
	{
		cin>>vi[i]>>wi[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=v;j>=vi[i];j--)
		{
			if(j>=vi[i])
			    f[j]=max(f[j],f[j-vi[i]]+wi[i]);
		}
	}
	cout<<f[v];
	return 0;
} 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值