https://www.acwing.com/problem/content/description/2/https://www.acwing.com/problem/content/description/2/
原题链接
题目描述
有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
8
dfs(记忆化搜索)
#include <iostream>
using namespace std;
int n,v;
int wi[1010],vi[1010];
int mem[1010][1010];
int dfs(int x,int cnt)
{
if(mem[x][cnt]) return mem[x][cnt];
int sum=0;
if(x>n) return 0;
else
{
if(cnt<vi[x]) sum=dfs(x+1,cnt);
else if(cnt>=vi[x])
sum=max(dfs(x+1,cnt),dfs(x+1,cnt-vi[x])+wi[x]);
}
mem[x][cnt]=sum;
return sum;
}
int main()
{
scanf("%d %d",&n,&v);
for(int i=1;i<=n;i++)
{
scanf("%d %d",&vi[i],&wi[i]);
}
int res=dfs(1,v);
cout<<res;
return 0;
}
二维数组的dp(倒序)
#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011][1011];
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
{
cin>>vi[i]>>wi[i];
}
for(int i=n;i>=1;i--)
{
for(int j=0;j<=v;j++)
{
if(j<vi[i]) f[i][j]=f[i+1][j];
else if(j>=vi[i])
{
f[i][j]=max(f[i+1][j],f[i+1][j-vi[i]]+wi[i]);
}
}
}
cout<<f[1][v];
return 0;
}
二维数组的dp(正序)
#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011][1011];
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
{
cin>>vi[i]>>wi[i];
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=v;j++)
{
if(j<vi[i]) f[i][j]=f[i-1][j];
else if(j>=vi[i])
{
f[i][j]=max(f[i-1][j],f[i-1][j-vi[i]]+wi[i]);
}
}
}
cout<<f[n][v];
return 0;
}
一维数组的dp(优化空间,大概7倍的变化)
重点:
第二个for循环要倒序,因为j-vi[i]小于j,更新f[j]时所用的就是上一层的数据,如果正序的话,更新f[j]就有可能是用本层前面的数据更新后面的数据,也就相当于每个物品选两次。
#include <iostream>
using namespace std;
int n,v;
int wi[1011],vi[1011];
int f[1011];
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
{
cin>>vi[i]>>wi[i];
}
for(int i=1;i<=n;i++)
{
for(int j=v;j>=vi[i];j--)
{
if(j>=vi[i])
f[j]=max(f[j],f[j-vi[i]]+wi[i]);
}
}
cout<<f[v];
return 0;
}