最短路问题之Bellman-Ford,SPFA算法,例题 负环

Bellman-Ford算法:

Bellman-Ford算法用于解决带有负权边的单源最短路径问题。其基本思想是通过不断地松弛边来逐步求解最短路径。算法的主要步骤如下:

  1. 初始化:将源点到各个顶点的距离初始化为无穷大,源点的距离初始化为0。
  2. 重复更新:重复执行以下步骤|V|-1次(其中|V|是顶点的数量):
    • 对于图中的每条边(u, v),尝试以当前最短路径长度到达顶点v,如果从源点s经过u再到v的路径长度更短,则更新v的最短路径长度为s到u的最短路径长度加上(u, v)的权值。
  3. 检测负权回路:检查所有边,如果在第|V|次松弛操作后,仍然存在顶点的最短路径长度可以继续减小,则说明存在负权回路。

Bellman-Ford算法的时间复杂度为O(|V| * |E|),其中|V|是顶点的数量,|E|是边的数量。

SPFA算法(Shortest Path Faster Algorithm):

SPFA算法是一种改进的最短路径算法,类似于Bellman-Ford算法,但是在实际应用中通常运行得更快。其基本思想是使用队列来保存待更新的顶点,并通过只对需要更新的顶点进行松弛操作来减少不必要的计算。算法的主要步骤如下:

  1. 初始化:将源点加入队列,并将源点到各个顶点的距离初始化为无穷大,源点的距离初始化为0。
  2. 重复更新:从队列中取出一个顶点u,遍历与u相邻的所有顶点v:
    • 如果以u为中介点,可以使得源点s到v的路径长度更短,则更新v的最短路径长度为s到u的最短路径长度加上(u, v)的权值,并将v加入队列。
  3. 重复步骤2,直到队列为空。

SPFA算法在最坏情况下的时间复杂度是O(|V| * |E|),但是在平均情况下通常运行得更快,特别是在稀疏图中。

洛谷 P3385 负环

AC code

#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
vector<PII> vv[3010];
int T;
int n,m;
int u,v,w;
queue<int> q;
int d[2010];
int vis[2010];
int cnt[2010];

inline bool spfa(){
	memset(d,0x3f,sizeof d);
	memset(vis,0,sizeof vis);
	memset(cnt,0,sizeof cnt);
	d[1]=0;q.push(1);vis[1]=1;
	while(q.size()){
		int t=q.front();q.pop();vis[t]=0;
		for(auto ed:vv[t]){
			int a=ed.first,b=ed.second;
			if(d[a]>d[t]+b){
				d[a]=d[t]+b;
				cnt[a]=cnt[t]+1;
				if(cnt[a]>=n) return true;判断负环
				if(!vis[a]) q.push(a),vis[a]=1;
			}
		} 
	}
	return false;
}



int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	cin>>T;
	while(T--){
		cin>>n>>m;
		for(int i=0;i<m;i++){
			cin>>u>>v>>w;
			if(w>=0) vv[u].push_back({v,w}),vv[v].push_back({u,w});
			else vv[u].push_back({v,w});
		}
	    if(spfa()) cout<<"YES"<<endl;
	    else cout<<"NO"<<endl;
	    for(int i=1;i<=n;i++) vv[i].clear();
	}
	return 0;
} 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值