最短路径问题(Bellman-Ford算法)

本文介绍了Bellman-Ford算法,一种用于寻找带负权重边的单源最短路径的算法。文章详细解释了算法原理、松弛操作、代码实现以及优化方法,并通过例子阐述了为何需要进行n-1次松弛操作。同时,提供了检测负权回路的判断条件和优化后的代码示例。
摘要由CSDN通过智能技术生成

题目链接见下:

https://begin.lydsy.com/JudgeOnline/problem.php?cid=1318&pid=10

今天我们来学习Bellman-Ford算法,它是一种单源的可带负权边最短路径算法,但它不能算出含负权回路的图(PS:负权回路指起点和终点相同的总权重为负的路径,其实就是一个环的总代价为负),因为本身每多走一次负权回路,最短距离便能够减少,但Ford算法能够检测出图中是否含有负权回路

1.算法解析

Ford算法的原理就是进行连续松弛,在每次松弛的情况下,与原来两点间的最短距离做比较,来更新最短路,最后n-1次松弛操作后即能求出源点到各点间的最短距离。
首先了解一下松弛操作

  1. 松弛操作的根源就是数学中的三角不等式
    In a rectangle , the longest edge is c(AB) , the other two edges are a(BC) and b(AC) , the relation of three edges is :
    a+b>c (AC+BC>AB)

    好了不装逼秀英语了,其实就是三角形中三边关系。
  2. 具体不等式式就是:
    min_w(v)=min(min_w(v),min_w(u)+w(u,v))
    [PS:min_w表示最短距离,w(a,b)表示a,b间的边权]
  3. 代码实现就很简单:
if (dis[v]>dis[u]+w[u][v])
	dis[v]=dis[u]+w[u][v];

那么为什么最后松弛的次数一定是n-1呢?
这是因为在一个图中,V为结点数,源点至目标点的最短距离所包含边数最大为V-1(此时这个图变成了一条链)。
而具体的时间复杂度就是里面一层循环1 to E(总边数)来枚举边进行松弛操作,外面套一层1 to V-1的循环来求出所有能求出的最短路,显然是 O(VE) 的。
实际上Ford算法的松弛迭代操作,就是在不断建立与源点s越来越大的层次的最短路,最后逐步形成一棵最短路径树的过程。
在对每条边进行第一遍松弛的时候,就可以找到层次至多为1的边(树枝),也就是找到了与s至多有一条边相连的点的最短路;
在对每条边进行第二遍松弛的时候,就可以找到层次至多为2的边(树枝),也就是找到了与s至多有二条边相连的点的最短路;
以此类推……

而在一个图中,最短路的包含的最多边数为|V|-1,所以只需要外循环|V|-1次。

2.代码实现

我们在读入每条边的数据时,用edge[e].w (e<=E)来表示每条边的边权,然后用edge[e].u和edge[e].v,来表示这条边所连接的两个结点,最后两层循环完成求解。

Code

#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstring>
#pragma GCC optimize(2)
using namespace std;

int n,m,a,b,s,t;
int x[101],y[101];
double dis[101]; //dis表最短路
struct Edge
{
   
	int u,v;
	double w;
} edge[4951];

inline void read(int &x) //quickly_read 快读
{
   
	x=0;int f=1;char ch=getchar();
	while (!isdigit(ch)) {
   if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值