A. Legs
二分答案,最后取左端点的值,保险起见,还是再验算一次
bool check(int x){
int a=n/4;
if(a*4+(x-a)*2>=n) return true;
return false;
}
void solve(){
cin>>n;
int l=0,r=n;
while(l+1<r){
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid;
}
if(check(l)) cout<<l<<endl;
else cout<<r<<endl;
}
B. Scale
以第一个为基础,隔k个字符取
void solve(){
cin>>n>>k;
for(int i=0;i<n;i++){
cin>>g[i];
}
for(int i=0;i<n;i+=k){
for(int j=0;j<n;j+=k){
cout<<g[i][j];
}cout<<endl;
}
}
C. Sort
预处理,统计前i位每个字母出现的次数,分别统计在x到y之间,s1和s2同一字母出现的次数相减,最后除以2就是答案了
void solve(){
cin>>n>>q;
string s1,s2;
cin>>s1>>s2;
f1[1][s1[0]-'a']++,f2[1][s2[0]-'a']++;
for(int i=2;i<=n;++i){
for(int j=0;j<26;j++){
f1[i][j]=f1[i-1][j],f2[i][j]=f2[i-1][j];
}
f1[i][s1[i-1]-'a']++,f2[i][s2[i-1]-'a']++;
}
while(q--){
ans=0;
cin>>x>>y;
for(int i=0;i<26;i++){
ans+=abs((f1[y][i]-f1[x-1][i])-(f2[y][i]-f2[x-1][i]));
//cout<<f1[y][i]<<f1[x-1][i]<<" "<<(char)(i+'a')<<" "<<f2[y][i]<<f2[x-1][i]<<endl;
}cout<<ans/2<<endl;
}
for(int i=1;i<=n;++i)
for(int j=0;j<26;j++) f1[i][j]=0,f2[i][j]=0;
}
D. Fun
有点暴力,用a<x限制a的取值,用b<n/a和b<x-a来限制b的取值,最后计算c在两个不等式下的较小取值,此时1<=c<=min(c)的符合不等式,所以把c加到里面
void solve(){
long long sum=0;
cin>>n>>x;
for(int a=1;a<x;a++){
for(int b=1;b<n/a&&b<x-a;b++){
int p=x-a-b,q=(n-a*b)/(a+b);
sum+=max(0,min(p,q));
}
}cout<<sum<<endl;
}
E. Decode
前缀和做法,把0当做-1这样方便计算前缀和,前缀和相同的sum[x],sum[y],中间的0和1的数量一样多,此时考虑他们往左右两边扩展,所以每个组合(x,y)对答案的贡献为(x+1)*(n-y+1),对于前缀和为0的要特别考虑,因为前面的算法每一次算前缀和为0的组合时漏算整体,比如1010,会漏掉1010的这种情况
void solve(){
string s;
cin>>s;
int n=s.size();ans=0;
mp.clear();
s=" "+s;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+(s[i]=='1'?1:-1);
}
mp[0]=1;//第一次遇到前缀和为0的即可统计,不为0的则先记录所在位置,等待后续遇到再做处理
for(int i=1;i<=n;i++){
ans=(ans+mp[sum[i]]*(n-i+1))%mod;
mp[sum[i]]=(mp[sum[i]]+i+1)%mod;
}cout<<(ans+mod)%mod<<endl;
}