在设计麦克风放大电路的时候遇到了这个滤波电路,本质是滤除低频干扰,但是似乎与之前学习的RC低通滤波电路不同,所以就去查阅了相关的资料。
1. 并联结构的滤波分析
在原理图中,82nF 的电容与 100kΩ 的电阻确实是并联的,而不是串联。这种结构的滤波原理不同于传统的 RC 串联高通或低通滤波器。
在这个电路中,电容和电阻的并联作用是:
- 电容提供高频信号的通路:高频信号会优先通过电容,而非电阻。
- 电阻决定低频信号的路径:低频信号更多地通过电阻。
这种并联结构实际上形成了一个反馈滤波器,它的频率特性由运算放大器的反馈网络决定。我们可以将其看作是对输入信号的某些频率范围进行增强或抑制。
2. 运算放大器的反馈网络分析
运算放大器的负反馈路径中包含了 100kΩ 的电阻和 82nF 的电容,它们共同决定了放大器的增益和频率特性:
- 反馈电阻 R=100kΩ 决定了反馈电流的大小;
- 反馈电容 C=82nF 决定了反馈路径对高频信号的响应。
这种设计会对输入信号的频率范围进行选择性放大或衰减,起到类似滤波的作用。
具体来说:
- 低频信号:反馈路径主要由电阻决定,反馈较强,增益较低。
- 高频信号:反馈路径主要由电容决定,反馈较弱,增益较高。
因此,这种并联结构实际上实现了一个高通滤波功能。
3. 反馈网络的截止频率计算
这种并联结构的等效截止频率 由以下公式决定:
这说明该反馈网络对低于 20Hz 的信号衰减较大,对高于 20Hz 的信号增益较高,从而实现了高通滤波功能。
4. 为什么并联也能形成滤波功能
传统的 RC 滤波器通常是串联结构,但在运算放大器的反馈网络中,电阻和电容并联后,其作用等效于影响放大器的频率响应。具体原因如下:
- 并联的电阻和电容改变了反馈信号的频率特性。
- 运算放大器的增益由反馈网络决定,因此反馈路径的频率特性直接影响输出信号的频率响应。
换句话说,虽然是并联结构,但由于它位于运算放大器的反馈回路中,其作用与传统的 RC 滤波器类似。