数据挖掘模型篇之R语言实践—3261人已学习
课程介绍
理论与实践结合的方式,通过通俗易懂的教学方式培养学生运用R语言完成常用挖掘模型算法建立及评估,学习完课程可以掌握:线性回归模型、聚类分析、关联规则算法、KNN近邻算法和主成分分析等常用的模型算法实现。针对具体的数据挖掘应用需求,能熟练抽象出可合适的数据挖掘模型,并整理出其技术实现路线。
课程收益
学习完课程可以掌握:线性回归模型、聚类分析、关联规则算法、KNN近邻算法和主成分分析等常用的模型算法实现。
讲师介绍
谢佳标 更多讲师课程
WOT峰会讲师,中国R语言大会讲师,数据分析师,8年以上数据挖掘建模工作实战经验,部分研究成果获国家专利,攥写《R语言与数据挖掘》、《数据先锋》、《R语言游戏数据分析》书籍
课程大纲
第1章:线性回归
1. 线性回归模型及自定义函数 20:33
2. 线性回归模型lm函数详解及简单线性回归案例演示 12:50
3. 线性回归模型lm函数详解及简单线性回归案例演示 12:50
4. 多项式及多元线性回归模型 16:27
5. 逐步回归及模型判断 16:11
6. 广义线性模型logit回归 18:46
第2章:聚类分析
1. 聚类方法原理介绍 9:53
2. 聚类算法R语言实现及K-均值聚类案例演示 12:11
3. 利用K-means算法来检测离群点 8:43
4. 层次聚类案例详解 17:32
第3章:关联规则
1. 关联规则原理及R语言实现 10:25
2. 关联规则可视化arulesViz包介绍 5:33
3. 超市购物例子-数据理解及数据可视化 19:50
4. 建立关联规则模型及规则可视化 21:08
5. 关联规则解读补充 3:17
第4章:KNN近邻
1. KNN近邻算法原理及K值选择 12:46
2. KNN近邻算法R语言实现 6:33
3. 案例演示:利用class包中的knn函数实现近邻算法 13:44
4. 案例演示:利用kknn函数及train函数实现近邻算法 6:55
5. 综合案例演示:如何利用KNN近邻算法识别患有乳腺癌症病患者 21:54
第5章:主成分分析
1. 综合案例演示:如何利用主成分分析构建股票指数 24:40
大家可以点击【 查看详情】查看我的课程
课程介绍
![201702271815354502.png](https://img-bss.csdn.net/201702271815354502.png)
理论与实践结合的方式,通过通俗易懂的教学方式培养学生运用R语言完成常用挖掘模型算法建立及评估,学习完课程可以掌握:线性回归模型、聚类分析、关联规则算法、KNN近邻算法和主成分分析等常用的模型算法实现。针对具体的数据挖掘应用需求,能熟练抽象出可合适的数据挖掘模型,并整理出其技术实现路线。
课程收益
学习完课程可以掌握:线性回归模型、聚类分析、关联规则算法、KNN近邻算法和主成分分析等常用的模型算法实现。
讲师介绍
谢佳标 更多讲师课程
WOT峰会讲师,中国R语言大会讲师,数据分析师,8年以上数据挖掘建模工作实战经验,部分研究成果获国家专利,攥写《R语言与数据挖掘》、《数据先锋》、《R语言游戏数据分析》书籍
课程大纲
第1章:线性回归
1. 线性回归模型及自定义函数 20:33
2. 线性回归模型lm函数详解及简单线性回归案例演示 12:50
3. 线性回归模型lm函数详解及简单线性回归案例演示 12:50
4. 多项式及多元线性回归模型 16:27
5. 逐步回归及模型判断 16:11
6. 广义线性模型logit回归 18:46
第2章:聚类分析
1. 聚类方法原理介绍 9:53
2. 聚类算法R语言实现及K-均值聚类案例演示 12:11
3. 利用K-means算法来检测离群点 8:43
4. 层次聚类案例详解 17:32
第3章:关联规则
1. 关联规则原理及R语言实现 10:25
2. 关联规则可视化arulesViz包介绍 5:33
3. 超市购物例子-数据理解及数据可视化 19:50
4. 建立关联规则模型及规则可视化 21:08
5. 关联规则解读补充 3:17
第4章:KNN近邻
1. KNN近邻算法原理及K值选择 12:46
2. KNN近邻算法R语言实现 6:33
3. 案例演示:利用class包中的knn函数实现近邻算法 13:44
4. 案例演示:利用kknn函数及train函数实现近邻算法 6:55
5. 综合案例演示:如何利用KNN近邻算法识别患有乳腺癌症病患者 21:54
第5章:主成分分析
1. 综合案例演示:如何利用主成分分析构建股票指数 24:40
大家可以点击【 查看详情】查看我的课程