github内删除某(几)个文件夹

参考:https://blog.csdn.net/jsd581/article/details/79569691 需要用git命令实现,不然你是没办法把文件夹干掉的! 首先保证已经为github生成了key,不然是没办法同步的~ (自行百度哈,很简单的~) 可能出现的问题: sign_a...

2018-12-17 21:57:43

阅读数 37

评论数 0

SSD、Faster-rcnn Loss

     一点细节疑惑: 其中VGG16中的Conv4_3层将作为用于检测的第一个特征图。conv4_3层特征图大小是 ,但是该层比较靠前,其norm较大,所以在其后面增加了一个L2 Normalization层(参见ParseNet),以保证和后面的检测层差异不是很大,这个和Batch...

2018-11-11 18:39:44

阅读数 83

评论数 0

object_detector MAP:

转载自:目标检测中的mAP是什么含义? - Wentao MA的回答 - 知乎 https://www.zhihu.com/question/53405779/answer/419532990 对于上述PR值,如果我们采用: VOC2010之前的方法,我们选取Recall &amp...

2018-11-01 13:09:51

阅读数 64

评论数 0

ssd

https://blog.csdn.net/huangbo10/article/details/62048168

2018-09-25 15:25:36

阅读数 47

评论数 0

linux 后台挂命令

招不在多,一招够用就行: nohup command >logfilename.log 2>&1& example: nohup sh run_pascal.sh >basel...

2018-09-20 16:02:44

阅读数 172

评论数 0

deeplab evaluate.py

#coding=utf-8 # import scipy.io import numpy as np # from skimage.io import imread from PIL import Image # data = scipy.io.loadmat('1.mat') # label...

2018-09-13 15:59:04

阅读数 134

评论数 2

caffe 跑deeplab_v2

传送门:传送门 排坑:传送门 传送门 matio安装参考:传送门 排坑记录: 因为没有权限的原因(比较严格,敏感的情况,如公司服务器啥的...),在安装matio的时候遇到生成不了libmatio.so.2的问题(就是make install 时候就报出不是sudoer的bug...),...

2018-09-13 13:33:43

阅读数 223

评论数 8

全连接层与卷积层的区别

传送门 一.全连接层:                 全连接层需要把输入拉成一个列项向量,如下图所示:          比如你的输入的feature map是2X2,那么就需要把这个feature map 拉成4X1的列向量,如果你的feature map 的channels是3,也就是...

2018-09-07 14:43:23

阅读数 244

评论数 0

MobileNet_V1

传送门: mobilenet_v1

2018-08-28 11:19:59

阅读数 139

评论数 0

Deformable Conv

参考链接: 传送门 细节见链接,总结下我的理解: 形变的不是卷积的 kernel,而是 feature map 上的每个pixel。 并没有对conv函数做什么变化,而是在普通的input map 和 conv之间,多做了一次conv得到input_offset map,再加上原input ...

2018-08-26 10:09:11

阅读数 287

评论数 1

caffe源码实践

REGISTER_LAYER_CLASS(DeforConvolution);  // 实现将指定Layer注册到全局注册表中     base_conv_layer.cpp 中,LayerSetUp函数内进行各种 变量、数据的声明。必要的话也在这初始化。(初始化在这里是自由的,可在...

2018-08-20 18:18:33

阅读数 50

评论数 0

caffe-backward之梯度计算

传送门: 传送门 backward是利用代价函数求取关于网络中每个参数梯度的过程,为后面更新网络参数做准备。求取梯度的过程也是一个矩阵运算的过程,后面会有详细介绍,本身求取梯度的过程并不是很复杂,而且网络中的各层求取梯度的过程都是相似的。下面就按照backward的运行顺序,从最后一层向前介绍c...

2018-08-09 09:54:28

阅读数 221

评论数 0

caffe源码解读整理

传送门: 传送门1 传送门2 传送门3 传送门4 传送门5 传送门6 传送门7 blob解析:传送门 比较全的: 传送门 caffe权重更新: 传送门 caffe中的正则: 传送门 修改caffe.proto文件:传送门   传送门 param:传送门 backward:...

2018-08-06 16:59:15

阅读数 90

评论数 0

cuda入门

传送门:传送门 CUDA从入门到精通(零):写在前面 在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择。还有不到一年毕业,怕是毕业后这些技术也就...

2018-08-01 16:21:19

阅读数 54

评论数 0

tf中文文档

tf中文文档

2018-08-01 09:29:34

阅读数 92

评论数 0

tensorflow 源码解读之三

传送门:传送门 深度学习大讲堂是由中科视拓运营的高质量原创内容平台,邀请学术界、工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术、产品和活动信息!   4. TF – Kernels模块   TF中包含大量Op算子,这些算子组成Graph的节点集合。这些算子对Tensor实现相应...

2018-07-31 22:50:35

阅读数 356

评论数 0

tensorflow 和 caffe 中的 padding "same" "valid"

tensorflow: "same":   outsize = [ insize / stride ]           其中,[ * ] 向上取整   padding zero 按照左奇右偶 "valid": ou...

2018-07-28 18:58:49

阅读数 159

评论数 0

tensorflow conv 源码解析

参考链接:传送门

2018-07-28 13:55:48

阅读数 206

评论数 0

bazel tf 使用问题

参考链接:传送门官方文档:官方文档1. Bazel must be invoked from a directory containing a WORKSPACE file. It reports an error if it is not. We call this the workspace ...

2018-07-15 10:29:08

阅读数 204

评论数 0

--trusted-host mirrors.aliyun.com 安装镜像的问题......

传送门:传送门pip升级到7.0以后,在使用http镜像进行包安装及升级的时候往往会有如下提示:Collecting beautifulsoup4 The repository located at mirrors.aliyun.com is not a trusted or secure hos...

2018-07-12 20:44:05

阅读数 338

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭