Semantic segmentation paper reading notes... (更新中...)

参考:知乎传送门
           csdn传送门

1. 逐渐摒弃对每个 pixel 进行类别分类的分割思想,而是把一个物类所包含的所有 pixels 看作一个整体。 尽量的实现类内一致和类间差别。(Face++的DFN:SN+BN)  paper 还加入了全局语境和高层特征引导底层特征学习的思想。
Context Encoding for Semantic Segmentation     亮点是 Context Encoding Module 不仅提升semantic segmentation 而且也助力浅层网的表现力,使得加了该结构的classification 业务能力也更强。
 paper

2. 主动的去解决或者减轻,样本数不均衡(指的是,每个类别内含有的 pixels 个数不尽相同)带来的物类分割影响。(Context Encoding for Semantic Segmentation 这篇有提到..) paper 的亮点在于引入语义编码思想、highlight class-dependent feature、使用SE-loss:不同于针对 pixel 的 loss 完全没有考虑 context... 并且 SE-loss 对物类大小不敏感,使小物类的分割效果得到提升。

Context Encoding for Semantic Segmentation     亮点是 Context Encoding Module 不仅提升semantic segmentation 而且也助力浅层网的表现力,使得加了该结构的classification 业务能力也更强。

 paper

3. multi-scale 和 horizontal flip 是比较常用的 data augmentation

4. 结合domain adaptation 思想的 paper:

Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes

Fully Convolutional Adaptation Networks for Semantic Segmentation



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值