参考:知乎传送门
1. 逐渐摒弃对每个 pixel 进行类别分类的分割思想,而是把一个物类所包含的所有 pixels 看作一个整体。 尽量的实现类内一致和类间差别。(Face++的DFN:SN+BN) paper 还加入了全局语境和高层特征引导底层特征学习的思想。
Context Encoding for Semantic Segmentation 亮点是 Context Encoding Module 不仅提升semantic segmentation 而且也助力浅层网的表现力,使得加了该结构的classification 业务能力也更强。
2. 主动的去解决或者减轻,样本数不均衡(指的是,每个类别内含有的 pixels 个数不尽相同)带来的物类分割影响。(Context Encoding for Semantic Segmentation 这篇有提到..) paper 的亮点在于引入语义编码思想、highlight class-dependent feature、使用SE-loss:不同于针对 pixel 的 loss 完全没有考虑 context... 并且 SE-loss 对物类大小不敏感,使小物类的分割效果得到提升。
Context Encoding for Semantic Segmentation 亮点是 Context Encoding Module 不仅提升semantic segmentation 而且也助力浅层网的表现力,使得加了该结构的classification 业务能力也更强。
3. multi-scale 和 horizontal flip 是比较常用的 data augmentation
4. 结合domain adaptation 思想的 paper:
Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes
Fully Convolutional Adaptation Networks for Semantic Segmentation