跟踪
咆哮的大叔
给儿子树立一个爱写博客的好榜样。
展开
-
FairMOT理解与实现
理解:(1)概述:多目标跟踪,单纯跟踪能力不足以完成任务,所以,不同于单目标跟踪,这里加入了检测任务,可以将多目标跟踪任务看成为目标检测+重识别任务。(2)论文网络结构:文中网络结构分3大部分:网络结构在:.\src\lib\models\networks\pose_dla_dcn.py中。①:Encoder-decoder 部分网络中,这是backbone network部分,主干网络为DLA-34(34层的DLA),最终input(HxW)->output(H/4xW/4)Enco原创 2020-05-28 18:29:19 · 13819 阅读 · 31 评论 -
相关滤波类跟踪概述(不断更新)
一:深度特征+相关滤波代表:SRDCF, C-COT, ECO , DeepSRDCF, STRCF, UPDATUPDATUPDAT在ECO基础上改进。论文贡献:①以经典深度学习网络作为backbone,深浅特征区别对待。(浅层特征使用HOG+CN,深层网络使用ResNet 50中的第四个Conv_block输出的feature)论文列出两种trick分别对深层和浅层的影响。(一)Data Augmentation。浅层特征主要提取文理颜色等特征,对外观形变等影响很大,深层特征主要提取语义原创 2020-06-05 16:56:15 · 1262 阅读 · 0 评论 -
siamRPN论文理解与复现
**论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf论文讲解:siamRPN的网络结构由两部分组成,siam+RPNSiam部分:主要功能是提取特征RPN部分:功能为产生候选框以及二分类vectorRPN流程:①从主干网络得到template Frame 特征向量和detection Frame特征向量之后,对这两组特征向量分别使原创 2020-05-31 18:25:18 · 6813 阅读 · 16 评论 -
以代码的脉络理解KCF论文思想
以代码的脉络理解KCF论文思想1:void init(const cv::Rect &roi, cv::Mat image);第一帧图像用来初始化。里面有两个重要步骤, cv::Mat getFeatures(const cv::Mat & image, bool inithann, float scale_adjust = 1.0f);和void train(cv::Mat ...原创 2019-12-26 12:44:13 · 481 阅读 · 0 评论