人工智能学习笔记
文章平均质量分 80
爱睡懒觉的焦糖玛奇朵
_(:з」∠)_别急
展开
-
【人工智能学习之PaddleOCR训练教程】
训练集txt文件中默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错。" 图像文件名 图像标注信息 "train_data/rec/train/word_001.jpg 简单可依赖train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单...|-rec|- train| ...原创 2024-10-12 12:29:58 · 771 阅读 · 0 评论 -
【人工智能学习之PaddleOCR快速上手】
在配置文件中,可以设置组建模型、优化器、损失函数、模型前后处理的参数,PaddleOCR从配置文件中读取到这些参数,进而组建出完整的训练流程,完成模型训练,在需要对模型进行优化的时,可以通过修改配置文件中的参数完成配置,使用简单且方便修改。而 L2 正则化中,添加正则化项的目的在于减少参数平方的总和。准确检测的标准是检测框与标注框的IOU大于某个阈值,正确识别的检测框中的文本与标注的文本相同。如果缺少带标注的数据,或者不想投入研发成本,建议直接调用开放的API,开放的API覆盖了目前比较常见的一些垂类。原创 2024-10-12 12:26:23 · 1543 阅读 · 1 评论 -
【人工智能学习之常用损失函数浅谈】
FLpt−αt1−ptγlogptFLpt−αt1−ptγlogptptp_tpt是模型预测的概率,对于正样本ptpp_t = pptp,对于负样本pt1−ppt1−p。αt\alpha_tαt是平衡因子,用于调整正负样本之间的权重,αt\alpha_tαt对于正样本和负样本可以取不同的值。γ\gammaγ。原创 2024-09-23 16:45:22 · 962 阅读 · 0 评论 -
【人工智能学习之卷积神经网络发展简述】
卷积神经网络的发展历程展示了从最初的生物启发到现代深度学习模型的演变。每一个阶段的关键创新都为后续的发展奠定了基础,使得 CNN 在图像识别、视频处理、自然语言处理等领域取得了巨大成功。未来,随着技术的不断进步,CNN 有望在更多领域发挥重要作用。原创 2024-09-23 16:44:59 · 950 阅读 · 0 评论 -
【人工智能学习之人脸识别】
注册需要采集上下左右转头的人脸图像,登录则需要将检测区的人脸与特征库进行比对(比对方法可以采取欧氏距离或者余弦相似度)。特征提取我选择的DeepFace中的Facenet512,读者也可以换成其它的模型或者自己训练的模型都可以,这里只做特征提取,所以我直接使用训练好的DeepFace中的Facenet512。common.py中的drawbbox中对bbox的使用有很强的参考性,它会让你明白返回的x, y, r, b分别是什么,以及你如何按照你的想法调整。思路:人脸检测->特征提取->注册/识别。原创 2024-09-12 16:36:32 · 594 阅读 · 0 评论 -
【人工智能学习之姿态估计】
通过模型可以得到鼻子,左眼,右眼,左耳,右耳,左肩,右肩,左肘,右肘,左腕,右腕,左臀,右臀,左膝,右膝,左踝,右踝的17个关节点,通过这些关节点设计算法即可判断人体姿态。姿态估计可以直接使用训练好的模型和权重model=“yolo_nas_pose_l”, weights=“coco_pose”。原创 2024-09-12 16:35:44 · 348 阅读 · 0 评论 -
【人工智能学习之商品检测实战】
商品自动识别,一个简单的商品检测项目,数据集读者可以自行拍摄,录制视频抽帧即可训练模型了。有什么交流意见可以评论或者私信我。这里放一个展示视频:商品检测效果视频。原创 2024-07-31 11:36:17 · 1152 阅读 · 0 评论 -
【yolov8:报错AttributeError: ‘Segment‘ object has no attribute ‘detect‘】
今天在运行yolov8的Segment模式的val模型测验时报错:AttributeError: 'Segment' object has no attribute 'detect'原创 2024-06-26 10:46:18 · 1071 阅读 · 0 评论 -
【yolov8:metrics = model.val()报错TypeError: int() 】
TypeError: int() argument must be a string, a bytes-like object or a number, not 'KeyboardModifier'原创 2024-06-26 10:45:50 · 303 阅读 · 0 评论 -
【人工智能学习之标签工具labelme】
LabelMe是一个开源的图像标注工具,主要用于计算机视觉和机器学习任务中的图像数据标注。它允许用户在图像上创建和编辑矩形、多边形、椭圆等形状来标记感兴趣的区域(ROI),并可以为这些区域分配类别标签或描述性文本。LabelMe最初是由麻省理工学院的计算机科学与人工智能实验室(MIT CSAIL)开发的,支持JSON格式的标注输出,便于集成到深度学习和其他机器学习管道中进行训练数据的准备。此工具广泛应用于物体识别、图像分割、实例分割等领域的研究和应用开发。原创 2024-06-25 09:46:49 · 584 阅读 · 0 评论 -
【人工智能学习之手写数字识别K-means聚类算法的Python实现示例及损失设计】
softmax 是通过角度分类的,Arc-Softmax 加宽了角度间的分界线,从而达到加大类间距的目的。感兴趣的朋友也可以使用Relu()或者其它激活函数尝试,效果不是特别好,聚类比较随意。softmax函数大家都很熟悉,在此就不赘述了,不清楚的可以简单看一下下图。我们先使用多分类交叉熵损失函数,它可以衡量两个概率分布之间的距离。不过我们可以使用一些比较新的技术比如Mish()。Arc-Softmax可以直接替换分类的全连接层。当然,网络也可以换成卷积,效果会更好一些。在深度学习中:概率分布=特征分布。原创 2024-06-25 09:45:55 · 1043 阅读 · 0 评论 -
【人工智能学习之YOLOV5更换主干网络】
更换GhostNet主干网络比较简单,因为models/common.py里面已经写好了相关类的定义,如下图。最后在调用yaml文件时将原本的yoloXX.yaml切换为shufflenet.yaml即可。最后在调用yaml文件时将原本的yoloXX.yaml切换为mobilenet.yaml即可。最后在调用yaml文件时将原本的yoloXX.yaml切换为ghostnet.yaml即可。MobileNet的添加我们采取另一种方式。所以我们直接配置yaml文件即可。原创 2024-06-24 21:06:04 · 469 阅读 · 0 评论 -
【人工智能学习之骨龄检测实战】
分析我们获取的数据集,发现很多图片有雾感(即图像中像素几乎集中在一个区间,导致图片中的对比度不强,给我们呈现出雾感),会影响模型的训练,于是采用直方图均衡化来进行处理。克隆 repo,并要求在 Python>=3.8.0 环境中安装 requirements.txt ,且要求 PyTorch>=1.8。关节数据集是我处理过的,后文会讲述处理方法,大家可以自行调整。analyse_bone_age:检测手骨筛选关节。大家也可以使用自己或者其他的一些数据集进行训练。训练完成后,最优权重会按关节名称进行保存。原创 2024-06-24 21:05:23 · 2293 阅读 · 10 评论 -
【人工智能学习之YOLOV3网络搭建实战】
【代码】【人工智能学习之YOLOV3网络搭建实战】原创 2024-05-10 15:47:30 · 344 阅读 · 0 评论 -
【人工智能学习之卷积神经网络篇(三)】
MobileNetV1的核心思想是利用深度可分离卷积,相比于传统的卷积操作,在保持相同参数数量的情况下,显著减少了计算量,从而提高了网络的运算速度。与标准卷积网络不一样的是,我们将卷积核拆分成为但单通道形式,在不改变输入特征图像的深度的情况下,对每一通道进行卷积操作,这样就得到了和输入特征图通道数一致的输出特征图。在深度卷积的过程中,我们得到了8×8×3的输出特征图,我们用256个1×1×3的卷积核对输入特征图进行卷积操作,输出的特征图是8×8×256。而在高维度进行ReLU运算的话,信息的丢失则会很少。原创 2024-05-10 15:40:55 · 629 阅读 · 0 评论 -
【人工智能学习之卷积神经网络实战(手把手教你搭网络,超详细!)】
卷积神经网络的设计搭建与训练检验原创 2024-05-09 18:50:09 · 1392 阅读 · 0 评论 -
【人工智能学习之卷积神经网络篇(二)】
全连接的缺点、卷积、卷积运算介绍池化、dropout、BatchNormal、残差信息瓶颈、分组卷积、通道混洗通道优化、经典模型原创 2024-05-09 18:37:02 · 915 阅读 · 0 评论 -
【人工智能学习之卷积神经网络篇(一)】
全连接的缺点、卷积、卷积运算介绍池化、dropout、BatchNormal、残差信息瓶颈、分组卷积、通道混洗通道优化、经典模型原创 2024-05-08 16:06:24 · 719 阅读 · 1 评论 -
【人工智能学习之手势识别检测实战】
双手手势检测原创 2024-05-08 16:02:47 · 612 阅读 · 3 评论 -
【人工智能学习之信息论篇】
信息量熵相对熵/KL散度交叉熵原创 2024-04-17 19:39:43 · 989 阅读 · 1 评论 -
【人工智能学习之全连接神经网络篇】
机器学习 & 深度学习介绍神经元与感知机全连接神经网络构建全连接神经网络的流程分析原创 2024-04-17 20:42:48 · 1923 阅读 · 1 评论 -
【人工智能学习之线代篇】
拟合、线性可分、张量张量运算自动微分原创 2024-04-16 19:37:16 · 1074 阅读 · 0 评论 -
【人工智能学习之高数篇】
math模块、初等函数、激活函数极限、导数、偏导梯度下降、反向传播梯度下降法实现线性回归原创 2024-04-16 19:33:15 · 892 阅读 · 0 评论