多项式——多项式函数

多项式——多项式函数

我们使用牛顿迭代法计算多项式函数。

多项式对数函数

对于函数 ln ⁡ P ( x ) \ln P(x) lnP(x) 来说:

( ln ⁡ P ( x ) ) ′ = P ′ ( x ) P ( x ) (\ln P(x))' = \frac{P'(x)}{P(x)} (lnP(x))=P(x)P(x)

所以我们能在 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间内计算出 ln ⁡ P ( x ) \ln P(x) lnP(x)

多项式指数函数

已知 e P ( x ) = Q ( x ) e^{P(x)} = Q(x) eP(x)=Q(x) ,那么 ln ⁡ Q ( x ) = P ( x ) \ln Q(x) = P(x) lnQ(x)=P(x) 即解 F ( Q ) = ln ⁡ Q − P = 0 F(Q) = \ln Q - P = 0 F(Q)=lnQP=0

根据牛顿迭代法 F ( Q ) = ln ⁡ Q − P F(Q) = \ln Q - P F(Q)=lnQP 并且 F ′ ( Q ) = 1 Q F'(Q) = \frac{1}{Q} F(Q)=Q1 。带入牛顿迭代式得到:

Q k + 1 = Q k − ( ln ⁡ Q k − P ) Q k = Q k ( 1 + P − ln ⁡ Q k ) Q_{k+1} = Q_k - (\ln Q_k - P)Q_k = Q_k(1+P-\ln Q_k) Qk+1=Qk(lnQkP)Qk=Qk(1+PlnQk)

多项式开根

已知 P ( x ) = Q ( x ) \sqrt{P(x)} = Q(x) P(x) =Q(x) ,那么 P ( x ) = Q ( x ) 2 P(x) = Q(x)^2 P(x)=Q(x)2 即解 F ( Q ) = Q 2 − P = 0 F(Q) = Q^2 - P = 0 F(Q)=Q2P=0

根据牛顿迭代法 F ( Q ) = Q 2 − P F(Q) = Q^2 - P F(Q)=Q2P 并且 F ′ ( Q ) = 2 Q F'(Q) = 2Q F(Q)=2Q 。带入牛顿迭代式得到:

Q k + 1 = Q k − Q k 2 − P 2 Q k Q_{k+1} = Q_k - \frac{Q_k^2 - P}{2Q_k} Qk+1=Qk2QkQk2P

多项式乘法逆元

在之前的学习,你已经会倍增的多项式乘法逆元求法,现在作为练习,尝试使用牛顿迭代推导多项式乘法逆元公式。

多项式快速幂

考虑式子 A ( x ) k = exp ⁡ ( k ln ⁡ ( A ( x ) ) ) A(x)^k = \exp(k \ln(A(x))) A(x)k=exp(kln(A(x))) 就可以算出多项式快速幂,只不过 a 0 = 1 a_0 = 1 a0=1 才可以,如果 a 0 ≠ 1 a_0 \neq 1 a0=1 需要另加处理。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值