电子技术——CMOS 逻辑门电路

电子技术——CMOS 逻辑门电路

Logo

在本节我们介绍如何使用CMOS电路实现组合逻辑函数。在组合电路中,电路是瞬时发生的,也就是电路的输出之和当前的输入有关,并且电路是无记忆的也没有反馈。组合电路被大量的使用在当今的数字逻辑系统中。

晶体管的开关模型

CMOS数字电路使用NMOS和PMOS晶体管作为开关使用。之前,我们知道,MOS可以工作在三极管区(相当于开关闭合),也可工作在截止区(相当于开关断开)。

特别的,当一个NMOS作为闭合的开关的时候,此时栅极电压处于高电压,相当于一个从漏极到源极直接相当小的一个电阻 R o n R_{on} Ron r D S r_{DS} rDS ,通常处在高电压 V D D V_{DD} VDD 状态,表示逻辑1。相反,当栅极为低电压的时候,此时MOS截止,表示逻辑0,没有电流流过MOS,如图:

晶体管的开关模型
而PMOS则工作在相反的状态,栅极高电压,MOS管截止,栅极低电压,MOS管导通,如图:

晶体管的开关模型
我们观察到MOS管的栅极通常是逻辑控制输入节点,通常作为逻辑门的输入端。

CMOS反相器

在了解MOS开关的工作方式之后,先让我们制作一个反相器。正如其名,反相器可以逆转输入的逻辑,即输入0输出1,反之亦然。因此该功能可以使用布尔函数表示为:

Y = X ‾ Y = \overline{X} Y=X

其抽象电路模型和实现电路如图所示:

CMOS反相器
它由一对CMOS组成,栅极相连,作为输入端 X X X ,漏极相连作为输出端 Y Y Y 。当 X = 1 X=1 X=1 的时候,即 V X = V D D V_X = V_{DD} VX=VDD ,此时PMOS截止,而NMOS导通,输出 Y = 0 Y = 0 Y=0 。当 X = 0 X=0 X=0 的时候,PMOS导通而NMOS截止,此时输出 Y = 1 Y=1 Y=1

CMOS逻辑门的一般结构

由上面的反相器我们能总结出CMOS逻辑门的一般结构,反相器由一个NMOS 下拉晶体管 和一个PMOS 上拉晶体管 组成。CMOS逻辑门由两个网络组成:一是 下拉网络PDN 由NMOS组成 ,二是 上拉网络PUN 由PMOS组成。如图:

CMOS逻辑门的一般结构
这两个网络都受到输入变量的控制,做出相反的行为,上图是一个三变量输入的逻辑门,当输入变量满足PDN条件的时候,此时PDN网络导通,而PUN网络截止,输出 Y = 0 Y=0 Y=0 ,反之亦然。

因此,我们可以根据不同的PDN和PUN的实现,来实现与门、或门等一些基本的门电路,下图是一些PDN网络的例子:

PDN
在图(a)我们发现当 A = 1 A=1 A=1 的时候, Q A Q_A QA 导通此时 Y = 0 Y = 0 Y=0 ,同样的对于 B = 1 B = 1 B=1 Q B Q_B QB 导通此时 Y = 0 Y = 0 Y=0 ,因此图(a)是一个或门的PDN实现,可以表示为:

Y ‾ = A + B \overline{Y} = A + B Y=A+B

或是:

Y = A + B ‾ Y = \overline{A + B} Y=A+B

图(b)必须两个NMOS全部导通才能输出,是一个与门结构,可以表示为:

Y ‾ = A B \overline{Y} = AB Y=AB

或是:

Y = A B ‾ Y = \overline{AB} Y=AB

最后一个例子图©是一个组合逻辑,可以表示为:

Y ‾ = A + B C \overline{Y} = A + BC Y=A+BC

或者等效于:

Y = A + B C ‾ Y = \overline{A + BC} Y=A+BC

接下来我们考虑一些PUN的一些例子,如图:

PUN
图(a)当 A = 0 A = 0 A=0 或是 B = 0 B = 0 B=0 的时候输出 Y = 1 Y = 1 Y=1 表示为:

Y = A ‾ + B ‾ Y = \overline{A} + \overline{B} Y=A+B

图(b)当 A = 0 A=0 A=0 并且 B = 0 B= 0 B=0 的时候导通,表示为:

Y = A ‾   B ‾ Y = \overline{A} \ \overline{B} Y=A B

而图©表示为:

Y = A ‾ + B ‾   C ‾ Y = \overline{A} + \overline{B} \ \overline{C} Y=A+B C

在学习完PDN和PUN理论之后,我们就可以准备搭建我们的门电路了。首先,为了方便,我们不再使用模拟电路中的MOS符号,而是使用一种更加方便的数字电路MOS表示符号,如图:

数字MOS
上图中左边的符号是模拟MOS表示,而右边是数字MOS表示,对于PMOS我们发现在栅极的地方有一个小圈,这表示当输入是低电压的时候才导通。除此之外,数字MOS忽略了漏极栅极之分。

或非门NOR电路

首先我们考虑一个CMOS的或非门电路:

Y = A + B ‾ = A ‾   B ‾ Y = \overline{A + B} = \overline{A} \ \overline{B} Y=A+B=A B

等式中间给出了PDN实现,等式右边给出了PUN实现,将两个实现组合在一起,我们得到:

或非门电路

与非门NAND电路

与非门电路可以表示为:

Y = A B ‾ = A ‾ + B ‾ Y = \overline{AB} = \overline{A} + \overline{B} Y=AB=A+B

等式中间给出了PDN实现,等式右边给出了PUN实现,将两个实现组合在一起,我们得到:

与非门电路

一个更复杂的门电路

考虑下面的组合布尔表达式:

Y = A ( B + C D ) ‾ Y = \overline{A(B+CD)} Y=A(B+CD)

因为PDN是整体反相,因此可以直接给出PDN实现,对于PUN则是变量反相,可以通过德·摩根定律展开表达式:

Y = A ‾ + B ‾ ( C ‾ + D ‾ ) Y = \overline{A} + \overline{B}(\overline{C} + \overline{D}) Y=A+B(C+D)

给出实现:

复杂的逻辑组合
需要注意的是,有时候并不总是可以通过对偶律来获得两个网络的实现。对于以上情况,需要更加复杂的布尔逻辑推导。

异或门XOR电路

另一个重要的逻辑电路是异或门电路,表示为:

Y = A B ‾ + A ‾ B Y = A \overline{B} + \overline{A}B Y=AB+AB

我们观察到给出 Y Y Y 我们可以先考虑PUN,但不幸的是,表达式不是由每个变量的反相值构成,因此我们需要额外的反相器,如图的PUN:

PUN
如上图,左边的 A ‾ \overline{A} A 和右边的 B ‾ \overline{B} B 都需要先反相才能输入到PUN中,因此需要额外的两个反相器,对于PDN,通过对偶变换可以得到:

Y ‾ = A B + A ‾   B ‾ \overline{Y} = AB + \overline{A} \ \overline{B} Y=AB+A B

对应的PDN实现为:

PDN
同样需要两个额外的反相器。则此异或门电路总共需要12个晶体管。

有趣的是,上图中两个PDN和PUN网络不是对偶网络,实际上,PDN和PUN网络对偶并不是必要条件。

总结

  1. PDN网络可以通过关于非互补变量的 Y ‾ \overline{Y} Y 的表达式得到,若表达式中存在互补变量,需要额外的输入反相器。
  2. PUN网络可以通过关于互补变量的 Y Y Y 的表达式得到,若表达式中存在非互补变量,需要额外的输入反相器。
  3. PDN网络可以将PUD网络进行对偶得到,反之亦然。
<think>嗯,用户的问题是关于CMOS异或门电路仿真的方法和工具。我需要先回顾一下CMOS异或门的基本结构,这样在解释仿真步骤时才能准确。CMOS异或门通常由多个MOSFET组成,可能使用传输门结构或者标准逻辑门组合。然后,仿真方法方面,用户可能需要知道常用的EDA工具,比如Cadence、LTspice、HSPICE等。这些工具各有特点,比如LTspice适合初学者,而Cadence更专业。 接下来,仿真流程需要分步骤说明,比如电路设计、网表生成、仿真设置、结果分析。每个步骤中要提到关键点,比如MOSFET参数设置、电源电压、输入信号配置。用户可能关心如何验证功能是否正确,所以需要提到瞬态分析和真值表对比。 另外,用户提供的引用中有提到CMOS inverter的设计,这可能与仿真中的上升下降时间有关,但异或门仿真可能需要不同的参数。需要确保回答中提到的工具和方法适用于数字电路仿真,而不仅仅是模拟电路。 还要考虑用户可能的背景,如果是学生或工程师,可能需要免费工具的信息,比如LTspice和Ngspice。同时,引用中的摩尔定律和IC发展史可能不是直接相关,但可以忽略,因为用户明确询问的是仿真方法和工具。 最后,相关问题部分需要生成与CMOS电路仿真相关的问题,比如优化方法、不同工艺的影响、故障分析等,以帮助用户进一步探索。</think>关于CMOS异或门电路仿真,以下是系统化的方法和工具说明: ### CMOS异或门电路仿真方法 1. **电路结构设计** 典型的CMOS异或门由8个MOSFET构成,采用互补逻辑结构。其布尔表达式为$Y = A \oplus B = A\overline{B} + \overline{A}B$,需要搭建传输门和标准逻辑门组合结构。 2. **仿真工具选择** - **专业EDA工具** - Cadence Virtuoso:集成Spectre仿真器,支持0.18μm到3nm工艺节点[^2] $$I_{DS} = \mu C_{ox} \frac{W}{L} \left( (V_{GS}-V_{th})V_{DS} - \frac{1}{2}V_{DS}^2 \right)$$ - Synopsys HSPICE:精度最高的SPICE仿真器,支持蒙特卡洛分析 - **免费工具** - LTspice XVII:内置MOSFET工业模型,支持开关瞬态分析 - Ngspice:开源SPICE工具,支持BSIM4模型 3. **仿真流程** ```mermaid graph TD A[建立电路原理图] --> B[设置MOSFET参数] B --> C[定义输入信号] C --> D[配置仿真类型] D --> E[执行仿真] E --> F[波形分析] ``` 关键参数设置包括: - MOSFET宽长比$W/L$(通常取2:1~4:1) - 电源电压$V_{DD}$(按工艺节点选择,如3.3V/1.8V) - 输入信号上升/下降时间(建议<10%周期) 4. **结果验证** 通过瞬态分析验证真值表: | A | B | Y | |---|---|----| | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | 需检查传播延迟(通常<100ps@28nm工艺)和功耗特性[^1] ### 典型仿真报告要素 1. 瞬态响应波形 2. 功耗分析(静态/动态) 3. 噪声容限验证 4. 工艺角(Process Corner)仿真结果
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值