A
上班 |
题意:
小宁花费x分钟坐大巴到小山路西后可以选择走路y分钟或者坐班车z分钟去公司,求出去公司最短的时间。
题解:
求出x+y和x+z中更小的一个输出。
代码:
#include<iostream>
using namespace std;
int x, y, z;
int main()
{
cin >> x >> y >> z;
cout << min(x + y, x + z);
return 0;
}
B
崇拜 |
题意:
有n个题目,第i个题目的难度值为ai,给你x,y,如果ai小于x则崇拜值减一,如果大于y则崇拜值加三,可以调整题目顺序,求讲解过程中的最大崇拜值。
题解:
显然要求最大的崇拜值我们可以把所有的大于y的值放在前面,所以要求最大崇拜值其实只需要在每有一个大于y的值时崇拜值就加3即可。
代码:
#include<iostream>
using namespace std;
const int N = 1e5 * 2 + 10;
int n, x, y;
int a[N];
int main()
{
int max = 0;
cin >> n >> x >> y;
for (int i = 0; i < n; i++)
{
cin >> a[i];
if (a[i] > y)
max += 3;
}
cout << max;
return 0;
}
C
方豆子 |
题意:
给定了一级好豆子和和一级坏豆子,求n级好豆子。
x级好豆子: x-1级坏豆子 x-1级坏豆子
x-1级坏豆子 x-1级好豆子
x级坏豆子: x-1级好豆子 x-1级好豆子
x-1级好豆子 x-1级坏豆子
题解:
求n级好豆子就要知道n-1级坏豆子和好豆子,而n-1级好豆子和坏豆子又由n-2级好豆子和坏豆子组成,所以我们可以先求2级好豆子和坏豆子,逐级往下推,得到n级好豆子。
代码:
#include<iostream>
using namespace std;
const int N = 1e5 * 2 + 10;
string good[10000] = {
"******",
"******",
"******",
"***...",
"***...",
"***..."
};
string bad[10000] = {
"......",
"......",
"......",
"...***",
"...***",
"...***"
};
string s[10000], b[10000];
int n;
int cf(int x)
{
int y = 1;
for (int i = 1; i <= x; i++)
y *= 2;
return y;
}
int main()
{
cin >> n;
for (int i = 2; i <= n; i++)
for (int j = 1; j <= 6 * (cf(i - 1) / 2); j++)
{
s[j - 1] = bad[j - 1] + bad[j - 1];
s[6 * cf(i - 1) / 2 + j - 1] = bad[j - 1] + good[j - 1];
b[j - 1] = good[j - 1] + good[j - 1];
b[6 * cf(i - 1) / 2 + j - 1] = good[j - 1] + bad[j - 1];
good[j - 1] = s[j - 1];
good[6 * cf(i - 1) / 2 + j - 1] = s[6 * cf(i - 1) / 2 + j - 1];
bad[j - 1] = b[j - 1];
bad[6 * cf(i - 1) / 2 + j - 1] = b[6 * cf(i - 1) / 2 + j - 1];
}
for (int i = 0; i < 6 * (cf(n - 1)); i++)
{
cout << good[i] << endl;
}
return 0;
}