torch.nn和torch.autograd

扩展torch.autograd

如果想要添加一个新的Operation 到autograd的话,我们的operation需要继承class Function. autograd使用Function计算结果和梯度,同时编码operation的历史。

Function一般只定义一个操作,并且它无法保存参数,一般适用于激活函数,pooling等,它需要定义三个方法,init(),forward(),backward()(需要自己定义求导规则)

torch.nn.Module和torch.autograd.Function是为pytorch提供自定义拓展的两种途径。

(1)途径一:通过继承torch.nn.Module类来实现拓展。这也是最常见的,在自定义模块中只需要定义构造函数和前向传播即可,即可自动求导。它最大的特点是以下几点:

        包装torch普通函数和torch.nn.functional专用于神经网络的函数;(torch.nn.functional是专门为神经网络所定义的函数集合)
        只需要重新实现__init__和forward函数,求导的函数是不需要设置的,会自动按照求导规则求导(Module类里面是没有定义backward这个函数的)
        可以保存参数和状态信息;

(2)方式二:通过继承torch.nn.Function类来实现拓展。它最大的特点是:

        在有些操作通过组合pytorch中已有的层或者是已有的方法实现不了的时候,比如你要实现一个新的方法,这个新的方法需要forward和backward一起写,然后自己写对中间变量的操作。
        需要重新实现__init__和forward函数,以及backward函数,需要自己定义求导规则;
        不可以保存参数和状态信息

总结: 当不使用自动求导机制,需要自定义求导规则的时候,就应该拓展torch.autograd.Function类。 否则就是用torch.nn.Module类,后者更简单更常用。

所以说nn.function 更加底层,来看一个例子,使用autograd.Function 定义新的自动求导函数

 

在底层,每一个原始的自动求导运算实际上是两个在Tensor上运行的函数。其中,forward函数计算从输入Tensors获得的输出Tensors。而backward函数接收输出Tensors对于某个标量值的梯度,并且计算输入Tensors相对于该相同标量值的梯度。

在PyTorch中,我们可以很容易地通过定义torch.autograd.Function的子类并实现forward和backward函数,来定义自己的自动求导运算。之后我们就可以使用这个新的自动梯度运算符了。然后,我们可以通过构造一个实例并像调用函数一样,传入包含输入数据的tensor调用它,这样来使用新的自动求导运算。

这个例子中,我们自定义一个自动求导函数来展示ReLU的非线性。并用它实现我们的两层网络:
————————————————

 
import torch
 
class MyReLU(torch.autograd.Function):
"""
我们可以通过建立torch.autograd的子类来实现我们自定义的autograd函数,
并完成张量的正向和反向传播。
"""
@staticmethod      ##静态方法:https://www.runoob.com/python/python-func-staticmethod.html
def forward(ctx, x):
"""
在正向传播中,我们接收到一个上下文对象和一个包含输入的张量;
我们必须返回一个包含输出的张量,
并且我们可以使用上下文对象来缓存对象,以便在反向传播中使用。
"""
#ctx.save_for_backward类似于ctx.input = input     ctx 相当于 class 中的 self
#参考:https://www.zhihu.com/question/366882609
ctx.save_for_backward(x)  
return x.clamp(min=0)     #截断  限制梯度最小值为非负
 
@staticmethod
def backward(ctx, grad_output):      #ctx 相当于 class 中的 self
"""
在反向传播中,我们接收到上下文对象和一个张量,
其包含了相对于正向传播过程中产生的输出的损失的梯度。
我们可以从上下文对象中检索缓存的数据,
并且必须计算并返回与正向传播的输入相关的损失的梯度。
"""
x, = ctx.saved_tensors          #data 
grad_x = grad_output.clone()    #grad
grad_x[x < 0] = 0               #截断
return grad_x                   #返回梯度
 
 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
# N是批大小;D_in 是输入维度;
# H 是隐藏层维度;D_out 是输出维度
N, D_in, H, D_out = 64, 1000, 100, 10
 
# 产生输入和输出的随机张量
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
 
# 产生随机权重的张量
w1 = torch.randn(D_in, H, device=device, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, requires_grad=True)
 
learning_rate = 1e-6
for t in range(500):
# 正向传播:使用张量上的操作来计算输出值y;
# 我们通过调用 MyReLU.apply 函数来使用自定义的ReLU
y_pred = MyReLU.apply(x.mm(w1)).mm(w2)
 
# 计算并输出loss
loss = (y_pred - y).pow(2).sum()
print(t, loss.item())
 
# 使用autograd计算反向传播过程。
loss.backward()
 
with torch.no_grad():   #这里在自己实现更新w1和w2,因此放到no_grad()里不跟踪计算梯度。
                        #由于这个阶段的optimizer是你自己写的SGD,只需要进行数值计算,不需要创建计算图 
                        #目的:在autograd里不跟踪这次 weight - grad的运算。 https://www.zhihu.com/question/326044178?sort=created
# 用梯度下降更新权重
w1 -= learning_rate * w1.grad
w2 -= learning_rate * w2.grad
 
# 在反向传播之后手动清零梯度
w1.grad.zero_()
w2.grad.zero_()

 

 

原文链接:https://blog.csdn.net/qq_27825451/article/details/102517406

                  https://blog.csdn.net/qq_27825451/article/details/95189376
                  https://www.jianshu.com/p/e39de662b30f
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是基于`torch.autograd.Function`实现`torch.nn.Linear`功能的示例代码: ```python import torch from torch.autograd import Function class LinearFunction(Function): @staticmethod def forward(ctx, input, weight, bias=None): ctx.save_for_backward(input, weight, bias) output = input.mm(weight.t()) if bias is not None: output += bias.unsqueeze(0).expand_as(output) return output @staticmethod def backward(ctx, grad_output): input, weight, bias = ctx.saved_tensors grad_input = grad_weight = grad_bias = None if ctx.needs_input_grad[0]: grad_input = grad_output.mm(weight) if ctx.needs_input_grad[1]: grad_weight = grad_output.t().mm(input) if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0) return grad_input, grad_weight, grad_bias class LinearLayer(torch.nn.Module): def __init__(self, input_size, output_size): super(LinearLayer, self).__init__() self.input_size = input_size self.output_size = output_size self.weight = torch.nn.Parameter(torch.Tensor(output_size, input_size)) self.bias = torch.nn.Parameter(torch.Tensor(output_size)) self.reset_parameters() def reset_parameters(self): torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(self.bias, -bound, bound) def forward(self, input): return LinearFunction.apply(input, self.weight, self.bias) ``` 在这个示例中,我们首先定义了一个名为`LinearFunction`的自定义函数,该函数继承自`torch.autograd.Function`。在这个函数中,我们实现了linear层的前向传播和反向传播逻辑。 接下来,我们定义了`LinearLayer`类,该类继承自`torch.nn.Module`。在类的构造函数中,我们创建了权重和偏置项参数,并使用`reset_parameters`方法对它们进行初始化。 在`forward`方法中,我们调用了`LinearFunction`的`apply`方法来完成linear层的前向传播。通过这种方式,我们可以将`LinearFunction`作为一个可调用的函数使用,并且它具有自动求导的能力。 你可以创建一个`LinearLayer`的实例,并将输入数据传递给它进行前向传播。希望这个示例能够帮助你理解如何基于`torch.autograd.Function`实现linear层的功能!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值