自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(522)
  • 资源 (3)
  • 收藏
  • 关注

原创 Deep Tone-Mapping Operator UsingImage Quality Assessment InspiredSemi-Supervised Learning

色调映射操作符(TMO)旨在将高动态范围(HDR)内容转换为低动态范围,以便其可以在标准动态范围(SDR)设备上显示。HDR内容的色调映射结果通常存储为SDR图像。对于不同的HDR场景,传统的TMOS只能在人工微调参数的情况下获得令人满意的SDR图像。本文提出了一种基于学习的深度卷积神经网络模型。我们探索不同的CNN结构,采用多尺度、多分支的全卷积设计。在训练深度CNN时,我们引入了图像质量评估(IQA),特别是色调映射图像质量评估,并将其实现为半监督损失项。

2023-02-03 10:55:12 5

原创 Conditional Sequential Modulationfor Efficient Global Image Retouching

照片修图是为了提高存在曝光过度/不足、对比度差、饱和度不协调等摄影缺陷的图像的视觉质量。实际上,照片修饰可以通过一系列图像处理操作来完成。在这篇论文中,我们研究了一些常用的修图操作,并且在数学上发现这些与像素无关的操作可以用多层感知器(MLP)来近似或公式化。在此基础上,我们提出了一个轻量级的框架--条件顺序修饰网络(CSRNet),用于高效的全局图像修饰。CSRNet由基础网络和条件网络组成。基础网络的作用类似于独立处理每个像素的MLP,而条件网络提取输入图像的全局特征以生成条件向量。

2023-02-01 14:49:11 103

原创 HAN(Single Image Super-Resolution via a Holistic Attention Network)

(84条消息) 【图像超分辨率重建】——HAN论文精读笔记_Zency_SUN的博客-CSDN博客

2023-01-18 11:08:12 16

原创 RCAN(Image Super-Resolution Using Very Deep Residual Channel Attention Networks)

(84条消息) RCAN论文笔记:Image Super-Resolution Using Very Deep Residual Channel Attention Networks_ytao_wang的博客-CSDN博客_rcan论文

2023-01-18 09:51:14 35

原创 学习率调整策略lr_scheduler

史上最全学习率调整策略lr_scheduler - 知乎 (zhihu.com)

2023-01-17 16:24:06 15

原创 SGD+Momentum

SGD+Momentum(动量梯度下降)

2023-01-17 16:19:35 12

原创 Adam算法及python实现

(84条消息) Adam算法及python实现_zoujiahui_2018的博客-CSDN博客_adam python

2023-01-17 15:59:41 17

原创 BCELoss和BCEWithLogitsLoss

(84条消息) GAN-详解BCELoss和BCEWithLogitsLoss_bceloss()_Immortal stars的博客-CSDN博客

2023-01-17 14:43:54 13

原创 SRGAN(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network)

(84条消息) 超分之一文读懂SRGAN_srgan网络结构_Ton10的博客-CSDN博客

2023-01-16 15:34:05 16

原创 DBPN(Deep Back-Projection Networks For Super-Resolution)

(84条消息) 图像超分辨之DBPN 读后总结_Image_w的博客-CSDN博客_dbpn网络

2023-01-16 10:44:04 11

原创 DRRN(Image Super-Resolution via Deep Recursive Residual Network)

(84条消息) DRRN超分辨率_无奈的小心酸的博客-CSDN博客_drfn 超分辨

2023-01-16 10:24:05 13

原创 DRCN(Deeply-Recursive Convolutional Network for Image Super-Resolution)

(83条消息) 超分算法DRCN:Deeply-Recursive Convolutional Network for Image Super-Resolution超分辨率重建_暖风的博客-CSDN博客

2023-01-13 15:00:14 15

原创 EDSR(Enhanced Deep Residual Networks for Single Image Super-Resolution)

(83条消息) 【超分辨率】(EDSR)Enhanced Deep Residual Networks for Single Image Super-Resolution论文阅读笔记_edsr arxiv_亿点困难的博客-CSDN博客

2023-01-13 14:15:36 16

原创 4、PixelShuffle

1 背景介绍2 用法简介2.1 实战代码2.2 效果展示。

2023-01-12 15:05:30 19

原创 3、ReLU激活函数

ReLu、LeakReLu、PReLu、ELU、SELU激活函数

2023-01-12 14:52:32 18

原创 24、TORCH.UTILS.DATA

PyTorch 数据加载实用程序的核心是 torch.utils.data.DataLoader 类。它代表一个可在数据集上迭代的 Python,支持这些选项由具有签名的 DataLoader 的构造函数参数配置:1002以下部分详细描述了这些选项的作用和用法。

2023-01-12 11:19:36 191

原创 Deep Learning for Image Super-resolution:A Survey

Abstract图像超分辨率技术是计算机视觉中提高图像和视频分辨率的一类重要的图像处理技术。近年来,深度学习技术在图像超分辨率方面取得了显著进展。本文旨在对基于深度学习的图像超分辨率研究进展进行综述。一般而言,我们可以将现有的SR技术研究大致分为三大类:监督SR、无监督SR和特定领域SR。此外,我们还讨论了一些其他重要问题,如公共可用的基准数据集和性能评估度量。最后,我们在总结这项调查时,强调了几个未来的方向和开放的问题,这些问题应该由社区在未来进一步解决。1 INTRODUCTION图像超分辨率(Imag

2023-01-09 17:30:25 389

原创 Photographic Tone Reproduction for Digital Images

Abstract经典的摄影任务是将现实世界亮度的潜在高动态范围映射到摄影印刷品的低动态范围。将数字图像映射到低动态范围的打印或屏幕的计算机图形从业者也面临着这种音调再现问题。本文介绍的工作利用了经过时间考验的摄影实践技术来开发新的色调再现算子。特别是,我们使用并扩展了Ansel Adams开发的技术来处理数字图像。所得算法简单,对各种图像产生良好的效果。1 Introduction我们在现实世界中体验到的光范围是巨大的,从星光灿烂的场景到阳光普照的雪,大约跨越十个数量级的绝对范围,从阴影到单个场景中的高光,

2022-11-25 16:12:56 280

原创 001 Creating your first app with PySide6

在本教程中,我们将学习如何使用PySide使用Python创建桌面应用程序。首先,我们将在桌面上创建一系列简单的窗口,以确保PySide正常工作,并介绍一些基本概念。然后,我们将简要介绍事件循环及其与Python中GUI编程的关系。最后,我们将看看Qt的QMainWindow,它提供了一些有用的通用界面元素,如工具栏和菜单。这些将在后续教程中详细介绍。

2022-11-11 14:02:28 337

原创 图像缩放(像素对齐)

图像缩放

2022-11-11 10:23:41 218

原创 Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement

本文提出了一种新的零参考深度曲线估计(Zero-DCE)方法,该方法将光增强定义为一种基于深度网络的图像特定曲线估计任务。我们的方法训练一个轻量级的深度网络DCE-Net,以估计像素级和高阶曲线,用于给定图像的动态范围调整。曲线估计是专门设计的,考虑到像素值范围,单调性,和可微性。Zero-DCE的优点在于它对参考图像的宽松假设,即在训练过程中不需要任何配对或未配对的数据。这是通过一组精心制定的非参考损失函数来实现的,这些函数隐含地度量增强质量并驱动网络的学习。

2022-11-02 14:31:25 146

原创 Learning Tone Curves for Local Image Enhancement

图像增强方法可以被描述为全局变换、局部变换、像素处理或这些操作的混合。全局变换在增强局部图像区域方面是有限的。现有的局部和像素方法缓解了这一问题,但也带来了额外的挑战,即有限的可解释性。为了弥补全局和局部方法之间的差距,我们提出了一个局部色调映射网络(LTMNET),它学习一个灰度曲线网格来局部增强图像。色调曲线通常被照片编辑软件使用,并为摄影师提供直观的表示,便于随后的图像定制。色调曲线也广泛应用于图像信号处理器中,使得我们的方法易于在摄像机上部署。

2022-10-31 14:45:54 414

原创 交替方向乘子法(ADMM)

交替方向乘子法(ADMM)

2022-10-17 15:57:20 152

原创 向量与矩阵范数

矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于L1和L2之间的一种范数。Matlab代码:JZL21fs=norm(A(:,1),2) + norm(A(:,2),2) + norm(A(:,3),2)++ norm(A(:,4),2)矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的有点在它是一个凸函数,可以求导求解,易于计算。矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大)

2022-10-17 14:24:57 409

原创 A Hybrid ℓ1-ℓ0 Layer Decomposition Model for Tone Mapping

色调映射旨在从保留视觉信息的高动态范围图像中再现标准动态范围图像。最先进的色调映射算法大多将图像分解为基础层和细节层,并进行相应的处理。由于缺乏施加在两层上的适当先验,这些方法可能存在光环伪影和过度增强的问题。在本文中,我们提出了一种混合的分解模型来解决这些问题。具体地说,在基础层上施加了一个l1稀疏性项,以模拟其分段平滑性。在细节层上施加了一个l0稀疏项,作为结构先验,这导致了分段恒定效应。我们进一步提出了一种基于图层分解模型的多尺度色调映射方案。

2022-10-17 13:51:12 611

原创 矩阵求导理论(下)

矩阵求导

2022-10-13 15:04:35 47

原创 Global and Local Enhancement Networks forPaired and Unpaired Image Enhancement

在这项工作中,提出了一种用于成对和非成对图像增强的新颖方法。首先,我们开发了全局增强网络 (GEN) 和局部增强网络 (LEN),它们可以忠实地增强图像。建议的GEN执行信道强度变换,该变换比像素预测更容易训练。所提出的LEN基于空间滤波来细化GEN结果。其次,我们针对成对学习和不成对学习提出了不同的训练方案,以训练GEN和LEN。特别是,我们提出了一种基于生成对抗网络的两阶段训练方案,用于不成对学习。实验结果表明,该算法在成对和非成对图像增强方面优于现有技术。

2022-10-12 14:06:46 552

原创 SepLUT: Separable Image-adaptive LookupTables for Real-time Image Enhancement

Abstract.图像自适应查找表 (lut) 由于其用于建模颜色变换的高效率,在实时图像增强任务中取得了巨大成功。但是,它们以耦合方式将完整的变换 (包括与颜色分量无关的部分和与分量相关的部分) 嵌入到仅一种类型的lut (1D或3D) 中。由于两个因素,该方案提出了提高模型表现力或效率的难题。一方面,一维lut提供了很高的计算效率,但缺乏颜色组件交互的关键能力。另一方面,3D lut具有增强的组件相关转换能力,但会遭受大量内存占用,高训练难度和有限的单元利用率的困扰。受图像信号处理器中传统的分而治之实践

2022-10-10 15:33:07 891

原创 Learning Image-adaptive 3D Lookup Tables forHigh Performance Photo Enhancement in Real-time

近年来,基于学习的方法越来越流行,以增强照片的色彩和色调。但是,许多现有的照片增强方法要么提供不令人满意的结果,要么消耗过多的计算和内存资源,从而阻碍了它们在实践中对高分辨率图像 (通常具有超过12百万像素) 的应用。在本文中,我们学习了图像自适应的3维查找表 (3D LUTs),以实现快速而强大的照片增强。3D LUTs广泛用于操纵照片的色彩和色调,但通常是手动调整并固定在相机成像管道或照片编辑工具中。据我们所知,我们第一次建议使用成对或不成对的学习从带注释的数据中学习3D LUTs。

2022-10-08 16:55:08 788

原创 矩阵求导理论(上)

矩阵求导

2022-09-29 16:24:01 106

原创 Retinex图像增强

在 SSR 算法中,参数 c 的选择直接影响图像增强的效果:c 越小,SSR 的动态压缩能力越强,图像阴暗部分的细节得到更好的增强,但是由于平均对比度范围较小,结果会产生颜色失真;c 越大,SSR 的颜色保真度越高,但是动态压缩能力会减弱。通常 SSR 是在动态范围压缩和色感一致性之间寻找平衡点。

2022-09-23 14:27:47 148

原创 High Dynamic Range Image Tone MappingBased on Asymmetric Model of RetinalAdaptation

使用对称视网膜对光响应模型的全局色调映射算子往往会产生低动态范围 (LDR) 图像,该图像在明亮或黑暗区域中显示出其对应的高动态范围 (HDR) 图像的细节丢失。在本文中,我们基于包含对称 S 形曲线的视网膜适应模型引入了一种新的非对称 S 形曲线(ASC),并利用 ASC 提出了两个全局色调映射算子。在所提出的方法中,通过使用众所周知的经典摄影技术,称为区域系统,获得基于 ASC 的色调映射函数。

2022-09-20 15:38:12 757

原创 Toward Fast, Flexible, and Robust Low-Light Image Enhancement

现有的弱光图像增强技术大多不仅难以处理视觉质量和计算效率,而且在未知的复杂场景中通常无效。在本文中,我们开发了一种新的自校准照明 (SCI) 学习框架,用于在现实世界的弱光场景中实现快速、灵活和稳健的增亮图像。具体来说,我们建立了一个具有权重共享的级联光照学习过程来处理这个任务。考虑到级联模式的计算负担,我们构建了自校准模块,该模块实现了每个阶段结果之间的收敛,产生仅使用单个基本块进行推理的增益(在以前的工作中尚未开发),这大大降低了计算成本。

2022-09-16 15:12:31 296

原创 Backlit images enhancement using global tone mappings and image fusion

Abstract:作者提出了一种增强背光图像的方法,即主要光源位于摄影对象后面的图像。这些图像同时包含非常暗和非常亮的区域。在这种情况下,单一的色调映射函数无法增强整个图像。他们建议使用几种这样的色调映射,其中一些增强暗区,而另一些增强亮区,然后使用图像融合算法组合所有这些结果。定性和定量结果证实了所提出方法的有效性。1 Introduction背光图像,如图 1 左图所示,同时包含非常暗和非常亮的区域。全局增强技术无法增强整个图像,因为暗区的改善会导致亮区过饱和,而亮区的改善会降低暗区的可见度。局部技术适

2022-09-06 19:05:16 662 1

原创 Tone-mapping high dynamic range images by novel histogram adjustment

abstract本文提出了一种新的直方图调整方法,用于显示高动态范围图像。 我们首先提出了一种基于全局直方图调整的色调映射算子,该算子能够很好地再现高动态范围图像的全局对比度。 然后利用全局色调映射算子对图像进行分割,在局部区域进行自适应对比度调整,以再现局部对比度,保证较好的质量。 我们证明了我们的方法是快速的,易于使用和一组固定的参数值产生了很好的结果,广泛的图像。 1. Introduction场景、图像或成像设备的动态范围定义为亮度或信号电平的最高与最低之比。 因此,现实世界的动态范围约为14个数量

2022-08-20 10:21:46 833

原创 Local Edge-Preserving Multiscale Decompositionfor High Dynamic Range Image Tone Mapping

提出了一种用于图像边缘保持分解的新型滤波器。它与以前的滤波器的不同之处在于它的局部自适应特性。过滤后的图像在任何地方都包含局部均值,并保留了局部显着边缘。我们的过滤结果与其他三种方法的结果进行了比较。还对滤波器的行为进行了详细分析。提出了使用该滤波器的多尺度分解来处理具有三个细节层和一个基础层的高动态范围图像。使用滤波器的多尺度分解解决了三个假设:1)基础层在任何地方都保留了局部均值;2)每个尺度的显着边缘都是局部窗口中相对较大的梯度;3)所有非零梯度信息都属于细节层。还提出了一种有效的函数来压缩细节层。.

2022-08-10 14:09:47 136

原创 ADNet: Attention-guided Deformable Convolutional Network for High DynamicRange Imaging

在本文中,我们提出了一种用于手持多帧高动态范围(HDR)成像的注意力引导可变形卷积网络,即 ADNet。这个问题包括两个棘手的挑战,即如何正确处理饱和度和噪声以及如何解决由物体运动或相机抖动引起的错位。为了解决前者,我们采用空间注意模块来自适应地选择各种曝光低动态范围(LDR)图像的最合适区域进行融合。对于后一种,我们建议使用金字塔、级联和可变形 (PCD) 对齐模块对齐特征级别的伽马校正图像。...

2022-08-08 14:02:58 225

原创 Gradient Domain High Dynamic Range Compression

我们提出了一种在传统显示器上渲染高动态范围图像的新方法。我们的方法在概念上简单、计算高效、稳健且易于使用。我们通过衰减大梯度的幅度来操纵亮度图像的梯度场。然后通过在修改后的梯度场上求解泊松方程来获得新的低动态范围图像。我们的结果表明,该方法能够进行剧烈的动态范围压缩,同时保留精细的细节并避免常见的伪影,例如光晕、梯度反转或局部对比度的损失。该方法还能够通过突出暗区的细节来显着增强普通图像。...

2022-08-05 10:22:41 457

原创 Local Laplacian Filters:Edge-Aware Image Processingwith a Laplacian Pyramid

拉普拉斯金字塔普遍用于将图像分解为多个尺度,并广泛用于图像分析。然而,因为它是用空间不变的高斯核构建的,所以人们普遍认为拉普拉斯金字塔不适合表示边缘,也不适合边缘感知操作,例如边缘保持平滑和色调映射。为了解决这些任务,已经提出了大量替代技术和表示,例如各向异性扩散、邻域滤波和专门的小波基。虽然这些方法已经展示了成功的结果,但它们以额外的复杂性为代价,通常伴随着更高的计算成本或需要对生成的结果进行后处理。在本文中,我们展示了使用标准拉普拉斯金字塔的最先进的边缘感知处理。.........

2022-08-03 14:13:19 659

原创 Blind Inverse Gamma Correction with Maximized DifferentialEntropy

在图像采集、处理和/或显示过程中,不希望的非线性伽马失真经常出现在各种各样的图像中。并且伽马失真通常随着捕获设置的变化和亮度的变化而变化。盲逆伽马校正,自动确定给定图像的适当恢复伽马值,对于衰减失真至关重要。对于盲逆伽马校正,直接从最大化微分熵模型提出了自适应伽马变换方法(AGT-ME)。并且相应的优化有一个数学上简洁的闭式解,从而实现了AGT-ME的高效实现和准确的伽马恢复。考虑到人眼具有非线性感知敏感性,还提出了改进版本的AGT-ME-VISUAL以获得更好的视觉性能。......

2022-07-29 16:01:56 542

python实现两张图片融合

实现两张图像融合,共两种方式,拉普拉斯金字塔融合,小波金字塔融合

2018-11-01

《Qt Creator快速入门》第二版 源代码

《Qt Creator快速入门》第二版 源代码

2016-03-31

edit汇编工具

这个可以使用,微型计算机及原理课的实验会用到,有些电脑上没有,所以发上来赚赚积分

2013-12-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除