- 博客(620)
- 资源 (3)
- 收藏
- 关注
原创 UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion
Abstract拍摄高动态范围(HDR)场景是摄像机设计中重要的问题之一.大多数摄像机都采用曝光融合技术,将不同曝光水平拍摄的图像进行融合,以增加动态范围。然而,这种方法只能处理具有有限曝光差异的图像,通常为3-4个光圈。当应用于需要较大曝光差异的非常高动态的场景时,由于输入之间不正确的对准或不一致的照明,或者色调映射伪影,该方法经常失败。在这项工作中,我们提出了UltraFusion,这是第一个可以合并具有9个光圈差的输入的曝光融合技术。该算法的核心思想是将曝光融合问题建模为一个有指导的修复问题,利用曝光
2025-01-22 21:46:09
1213
原创 FastLLVE: Real-Time Low-Light Video Enhancement with Intensity-Aware Lookup Table
ABSTRACT近年来,微光视频增强技术受到了越来越多的关注.LLVE的关键要求之一是帧间亮度一致性,这对于保持增强视频的时间相干性至关重要。然而,现有的基于单幅图像的图像增强方法大多无法解决这一问题,导致图像增强后的闪烁效应降低了图像的整体质量。此外,基于3D卷积神经网络(CNN)的方法(其被设计用于视频以保持帧间一致性)在计算上是昂贵的,使得它们对于实时应用是不切实际的。为此提出了一种利用查找表(Look-Up-Table,LUT)技术有效保持帧间亮度一致性的流水线FastLLVE算法。具体地说,我
2025-01-05 17:03:48
1218
原创 ATTENTIONLUT: ATTENTION FUSION-BASED CANONICAL POLYADIC LUT FORREAL-TIME IMAGE ENHANCEMENT
3DLUT通常由3D立方网格Ψ ∈ R3×N×N×N(N是每个维度中的网格数)表示,并且每个网格存储对应的输出值Ψ(x,y,z)∈ R3,其中x,y,z = 1,...、N.假设输入像素值为(ri,gi,bi),则可以通过两个步骤获得输出(ro,go,bo):(1)以输入像素值作为坐标点,找到最近的八个网格。最小批量大小设置为1。数据集MIT-Adobe-5 K数据集[15]是一个大型的图像增强数据集,包含手动修饰的地面实况,其中包含5,000组图像,每组图像包含一个RAW图像和五个人类专家修饰的图像。
2025-01-05 10:42:15
951
原创 4D LUT: Learnable Context-Aware 4D LookupTable for Image Enhancement
摘要:图像增强旨在通过修饰色彩和色调来提高照片的审美视觉质量,是专业数码摄影的必备技术。 近年来,基于深度学习的图像增强算法取得了可喜的性能并越来越受欢迎。 然而,典型的努力尝试为所有像素的颜色转换构建统一的增强器。 它忽略了对照片来说很重要的不同内容(例如天空、海洋等)之间的像素差异,导致结果不令人满意。 在本文中,我们提出了一种新颖的可学习上下文感知 4 维查找表(4D LUT),它通过自适应学习照片上下文来实现每个图像中不同内容的内容相关增强。 特别是,我们首先引入一个轻量级上下文编码器和一个参数编码
2025-01-04 12:35:04
605
原创 Learning Multi-Scale Photo Exposure Correction
Abstract用错误的曝光捕捉照片仍然是相机成像的主要错误来源。曝光问题可分为以下两类:(i)曝光过度,即相机曝光时间过长,导致图像区域明亮和褪色;(ii)曝光不足,即曝光时间过短,导致图像区域变暗。曝光不足和曝光过度都会大大降低图像的对比度和视觉吸引力。先前的工作主要集中在曝光不足的图像或一般图像增强。相比之下,我们提出的方法针对照片中的过度曝光和曝光不足错误。我们将曝光校正问题表述为两个主要子问题:(i)色彩增强和(ii)细节增强。因此,我们提出了一个从粗到精的深度神经网络(DNN)模型,可以端到
2024-12-28 11:53:05
987
原创 Improved Techniques for Training GANs
我们提出了应用于生成对抗网络(GAN)框架的各种新的架构特征和训练程序。我们重点关注 GAN 的两个应用:半监督学习和生成人类视觉上真实的图像。与大多数生成模型的工作不同,我们的主要目标不是训练一个为测试数据分配高可能性的模型,也不要求模型能够在不使用任何标签的情况下很好地学习。使用我们的新技术,我们在 MNIST、CIFAR-10 和 SVHN 上的半监督分类中取得了最先进的结果。
2024-10-31 13:38:32
1041
原创 How to Train Neural Networks for Flare Removal
当相机指向强光源时,生成的照片可能包含镜头眩光伪影。耀斑以多种形式出现(光晕、条纹、渗色、雾霾等),这种外观的多样性使得去除耀斑变得具有挑战性。现有的分析解决方案对伪影的几何形状或亮度做出了强有力的假设,因此仅适用于一小部分耀斑。机器学习技术已在消除其他类型的伪像(例如反射)方面取得了成功,但由于缺乏训练数据,尚未广泛应用于耀斑消除。为了解决这个问题,我们根据经验或使用波动光学对耀斑的光学原因进行明确建模,并生成耀斑损坏和干净图像的半合成对。这使我们能够首次训练神经网络来消除镜头眩光。
2024-10-30 15:40:15
1281
原创 A Style-Based Generator Architecture for Generative Adversarial Networks
(第 3.1 节)。我们使用两种不同的损失函数来评估我们的方法:对于 CELEBA-HQ,我们依靠 WGAN-GP [24],而 FFHQ 使用 WGAN-GP 进行配置 A,使用 R1 正则化 [44,51,14] 的非饱和损失 [22] 配置 B–F。我们发现这些选择可以提供最佳结果。我们的贡献不会修改损失函数。我们观察到,基于样式的生成器 (E) 比传统生成器 (B) 显着提高了 FID,几乎提高了 20%,这证实了并行工作中进行的大规模 ImageNet 测量 [6, 5]。
2024-10-30 11:13:15
988
原创 Conditional Generative Adversarial Nets
生成对抗网络 [8] 最近被引入作为训练生成模型的一种新颖方法。在这项工作中,我们介绍了生成对抗网络的条件版本,它可以通过简单地输入我们希望以生成器和判别器为条件的数据 y 来构建。我们证明该模型可以生成以类别标签为条件的 MNIST 数字。我们还说明了如何使用该模型来学习多模态模型,并提供了图像标记应用的初步示例,其中我们演示了该方法如何生成不属于训练标签的描述性标签。
2024-10-29 14:19:25
1194
原创 Wasserstein Generative Adversarial Networks
Abstract我们引入了一种名为 WGAN 的新算法,它是传统 GAN 训练的替代方案。 在这个新模型中,我们表明我们可以提高学习的稳定性,摆脱模式崩溃等问题,并提供对调试和超参数搜索有用的有意义的学习曲线。 此外,我们表明相应的优化问题是合理的,并提供了大量的理论工作,强调了分布之间不同距离的深层联系。1. Introduction本文关注的问题是无监督学习的问题。 主要是学习概率分布意味着什么? 对此的经典答案是学习概率密度。 这通常是通过定义一个参数密度族 (Pθ)θ∈Rd 并找到使我们
2024-10-29 13:38:56
1110
原创 LARGE SCALE GAN TRAINING FORHIGH FIDELITY NATURAL IMAGE SYNTHESIS
尽管最近在生成图像建模方面取得了进展,但成功地从复杂的数据集(如ImageNet)生成高分辨率、多样化的样本仍然是一个难以实现的目标。为此,我们在迄今为止尝试的最大规模上训练生成对抗网络,并研究这种规模特有的不稳定性。我们发现,将正交正则化应用于生成器使其适用于简单的“截断技巧”,通过减少生成器输入的方差,可以对样本保真度和多样性之间的权衡进行精细控制。我们的修改导致模型设置了新的状态,在类条件图像合成的艺术。
2024-10-28 10:22:26
521
原创 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
图像到图像转换是一类视觉和图形问题,其目标是使用对齐图像对的训练集来学习输入图像和输出图像之间的映射。然而,对于许多任务,配对训练数据将不可用。我们提出了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。我们的目标是学习映射 G : X → Y,使得使用对抗性损失时 G(X) 中的图像分布与分布 Y 无法区分。由于这种映射高度受限,我们将其与逆映射 F : Y → X 结合起来,并引入循环一致性损失来强制 F(G(X)) ≈ X(反之亦然)。
2024-10-25 16:15:02
1243
原创 Image-to-Image Translation with Conditional Adversarial Networks
我们研究条件对抗网络作为图像到图像翻译问题的通用解决方案。这些网络不仅学习从输入图像到输出图像的映射,还学习损失函数来训练这种映射。这使得可以将相同的通用方法应用于传统上需要非常不同的损失公式的问题。我们证明,这种方法在从标签图合成照片、从边缘图重建对象以及对图像着色等任务方面非常有效。事实上,自从与本文相关的 pix2pix 软件发布以来,大量互联网用户(其中许多是艺术家)已经发布了他们自己对我们系统的实验,进一步证明了其广泛的适用性和易于采用,而无需进行参数调整。
2024-10-25 14:10:12
780
原创 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
近年来,卷积网络(CNN)的监督学习在计算机视觉应用中得到了广泛采用。相比之下,CNN 的无监督学习受到的关注较少。在这项工作中,我们希望帮助缩小 CNN 在监督学习和无监督学习方面的成功之间的差距。我们引入了一类称为深度卷积生成对抗网络(DCGAN)的 CNN,它具有一定的架构限制,并证明它们是无监督学习的有力候选者。通过对各种图像数据集的训练,我们展示了令人信服的证据,证明我们的深度卷积对抗对在生成器和鉴别器中学习了从对象部分到场景的表示层次结构。
2024-10-25 10:50:25
859
原创 Generative Adversarial Nets
我们提出了一个通过对抗过程估计生成模型的新框架,其中我们同时训练两个模型:生成模型 G 捕获数据分布,判别模型 D 估计样本来自训练数据的概率,而不是 G 的训练过程是最大化 D 犯错误的概率。该框架对应于极小极大两人游戏。在任意函数 G 和 D 的空间中,存在唯一解,G 恢复训练数据分布,D 处处等于 1/2。在 G 和 D 由多层感知器定义的情况下,整个系统可以通过反向传播进行训练。在训练或生成样本期间不需要任何马尔可夫链或展开的近似推理网络。实验通过对生成的样本进行定性和定量评估来证明该框架的潜力。
2024-10-24 14:42:29
798
原创 ShuffleNet V2: Practical Guidelines for EfficientCNN Architecture Design
目前,神经网络架构设计主要以计算复杂度的间接指标(即 FLOP)为指导。然而,直接指标(例如速度)还取决于其他因素,例如内存访问成本和平台特性。因此,这项工作建议评估目标平台上的直接指标,而不仅仅是考虑失败次数。基于一系列受控实验,这项工作得出了一些有效网络设计的实用指南。因此,提出了一种新的架构,称为 ShuffleNet V2。全面的消融实验验证了我们的模型在速度和准确性权衡方面是最先进的。
2024-10-24 10:46:35
1006
原创 ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices
我们介绍了一种极具计算效率的CNN架构,名为ShuffleNet,它是专门为计算能力非常有限(例如,10-150 MFLOPs)的移动设备设计的。新架构采用了点群卷积和通道shuffle两种新的运算,在保持精度的同时大大降低了计算成本。在ImageNet分类和MS COCO目标检测上的实验表明,在40 MFLOPs的计算预算下,shufflenet在ImageNet分类任务上的top-1误差比最近的MobileNet[12]低7.8%,优于其他结构。
2024-10-23 16:36:29
833
原创 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
我们提出了一类名为 MobileNets 的高效模型,用于移动和嵌入式视觉应用。MobileNet 基于流线型架构,使用深度可分离卷积来构建轻量级深度神经网络。我们引入了两个简单的全局超参数,可以有效地在延迟和准确性之间进行权衡。这些超参数允许模型构建者根据问题的约束为其应用程序选择合适大小的模型。我们对资源和准确性权衡进行了广泛的实验,并且与其他流行的 ImageNet 分类模型相比表现出了强大的性能。
2024-10-23 15:16:01
1071
原创 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
训练深度神经网络很复杂,因为在训练过程中,随着前一层参数的变化,每层输入的分布也会发生变化。。批量归一化应用于最先进的图像分类模型,以减少 14 倍的训练步骤实现相同的精度,并大幅优于原始模型。使用批量归一化网络集合,我们改进了 ImageNet 分类的最佳已发表结果:达到 4.82% 的 top-5 测试误差,超过了人类评分者的准确性。
2024-10-23 14:47:40
1309
原创 MobileNetV2: Inverted Residuals and Linear Bottlenecks
在本文中,我们描述了一种新的移动架构 MobileNetV2,它提高了移动模型在多个任务和基准测试以及各种不同模型大小上的最先进性能。我们还描述了在我们称为 SSDLite 的新颖框架中将这些移动模型应用于对象检测的有效方法。此外,我们还演示了如何通过 DeepLabv3 的简化形式(我们称之为 Mobile DeepLabv3)构建移动语义分割模型。基于反向残差结构,其中快捷连接位于薄瓶颈层之间。中间扩展层使用轻量级深度卷积来过滤作为非线性源的特征。
2024-10-23 10:12:24
761
原创 Searching for MobileNetV3
我们展示了基于互补搜索技术和新颖架构设计相结合的下一代 MobileNet。MobileNetV3 通过结合硬件感知网络架构搜索 (NAS) 和 NetAdapt 算法来针对手机 CPU 进行调整,然后通过新颖的架构进步进行改进。本文开始探索自动搜索算法和网络设计如何协同工作,以利用互补的方法来提高整体技术水平。通过这个过程,我们创建了两个新的 MobileNet 模型来发布:MobileNetV3-Large 和 MobileNetV3-Small,分别针对高资源和低资源用例。
2024-10-22 15:30:54
841
原创 Deep Residual Learning for Image Recognition
更深层次的神经网络更难训练。我们提出了一个残差学习框架,以简化比以前使用的网络更深的网络训练。我们明确地将层重新表示为参考层输入的学习残差函数,而不是学习未引用的函数。我们提供了全面的经验证据,表明这些残差网络更容易优化,并且可以通过显着增加的深度来获得准确性。在 ImageNet 数据集上,我们评估深度高达 152 层的残差网络,比 VGG 网络 [41] 深 8 倍,但复杂度仍然较低。这些残差网络的集合在 ImageNet 测试集上实现了 3.57% 的误差。
2024-10-22 14:39:56
1365
原创 Non-local Neural Networks
卷积和循环运算都是一次处理一个局部邻域的构建块。在本文中,我们将非局部操作作为用于捕获远程依赖关系的通用构建块系列。受计算机视觉中经典非局部均值方法 [4] 的启发,我们的非局部操作将某个位置的响应计算为所有位置特征的加权和。该构建块可以插入许多计算机视觉架构中。在视频分类任务中,即使没有任何附加功能,我们的非局部模型也可以在 Kinetics 和 Charades 数据集上竞争或超越当前的竞赛获胜者。在静态图像识别中,我们的非局部模型改进了 COCO 任务套件的对象检测/分割和姿势估计。代码将可用。
2024-10-22 10:18:31
1211
原创 CBAM: Convolutional Block Attention Module
我们提出了卷积块注意力模块(CBAM),这是一种用于前馈卷积神经网络的简单而有效的注意力模块。给定中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。由于 CBAM 是一个轻量级通用模块,因此它可以无缝集成到任何 CNN 架构中,且开销可以忽略不计,并且可以与基础 CNN 一起进行端到端训练。我们通过在 ImageNet-1K、MS COCO 检测和 VOC 2007 检测数据集上进行大量实验来验证我们的 CBAM。
2024-10-21 14:18:39
2396
原创 Squeeze-and-Excitation Networks
卷积神经网络建立在卷积运算的基础上,通过在局部接受域内融合空间信息和通道信息来提取信息特征。为了提高网络的表示能力,最近的几种方法已经显示出增强空间编码的好处。在这项工作中,我们专注于通道关系,并提出了一种新的架构单元,我们称之为“挤压-激励”(SE)块,该单元通过明确建模通道之间的相互依赖性,自适应地重新校准通道智能特征响应。我们证明,通过将这些块堆叠在一起,我们可以构建SENet架构,在具有挑战性的数据集上泛化得非常好。
2024-10-21 10:27:25
1310
原创 Learning to Adapt to Light
光适应或亮度校正是提高图像对比度和视觉吸引力的关键步骤。有多种与光相关的任务(例如,低光增强和曝光校正),之前的研究主要单独研究这些任务。然而,考虑这些与光相关的任务是否可以通过统一的模型来执行是很有趣的,特别是考虑到我们的视觉系统以这种方式适应外部光。在这项研究中,我们提出了一种受生物学启发的方法,通过统一网络(称为 LA-Net)处理与光相关的图像增强任务。首先,设计了基于频率的分解模块,将光相关任务的常见和特征子问题解耦为两条路径。
2024-10-16 14:21:00
1003
原创 Explorable Tone Mapping Operators
色调映射在高动态范围 (HDR) 成像中起着至关重要的作用。它的目的是在动态范围有限的介质中保留 HDR 图像的视觉信息。尽管已经提出了许多工作来提供 HDR 图像的色调映射结果,但大多数工作只能以单一预先设计的方式执行色调映射。然而,色调映射质量的主观性因人而异,并且色调映射风格的偏好也因应用而异。本文提出了一种基于学习的多模态色调映射方法,不仅实现了出色的视觉质量,而且探索了风格多样性。基于BicycleGAN [1]的框架,所提出的方法可以通过操纵不同的潜在代码来提供各种专家级的色调映射结果。
2024-10-12 16:11:05
1206
1
原创 Unsupervised HDR Image and Video Tone Mapping via Contrastive Learning
捕捉高动态范围 (HDR) 图像(视频)很有吸引力,因为它可以揭示黑暗和明亮区域的细节。由于主流屏幕仅支持低动态范围(LDR)内容,因此需要色调映射算法来压缩HDR图像(视频)的动态范围。尽管图像色调映射已被广泛探索,但由于缺乏 HDR-LDR 视频对,视频色调映射仍然落后,尤其是基于深度学习的方法。在这项工作中,我们提出了一个用于无监督图像和视频色调映射的统一框架(IVTMNet)。为了改进无监督训练,我们提出了基于领域和实例的对比学习损失。
2024-10-11 15:12:22
939
原创 Adversarial and Adaptive Tone Mapping Operatorfor High Dynamic Range Images
这项工作涉及色调映射,这是一种将高动态范围 (HDR) 图像转换为低动态范围 (LDR) 图像的常用方法。我们通过使用自适应色调映射来解决这个问题。我们建议部署条件生成对抗网络来构建对抗性和自适应色调映射算子(adTMO),将 HDR 转换为 LDR 图像。我们使用称为色调映射图像质量指数 (TMQI) 的客观质量指标来评估我们的 adTMO。经过256 * 256图像的训练,adTMO能够生成256 * 256和高分辨率1024 * 2048 LDR图像。
2024-10-10 16:41:06
808
原创 TMO-Net: A Parameter-Free Tone Mapping Operator Using Generative Adversarial Network,and Performanc
目前发布的色调映射操作符(TMO)通常是在非常有限的高动态范围(HDR)图像测试集上进行评估的。因此,所产生的性能指标高度受制于广泛的超参数调整,并且当在更广泛的HDR图像上进行测试时,许多TMO表现出次优性能。这表明在这些技术的普遍适用性方面存在不足。最后,由于大规模HDR数据集的缺乏,使用需要数据的高级深度学习方法开发无参数色调映射算子是一个挑战。
2024-10-10 13:51:02
1242
原创 Deep tone mapping network in HSV color space
色调映射算子可以将高动态范围(HDR)图像转换为低动态范围(LDR)图像,这样我们就可以用LDR设备享受HDR图像的信息内容。然而,目前的色调映射算法主要关注亮度映射,而忽略了颜色分量。与此同时,它们经常遭受光晕伪影和过度增强。本文提出了一种色调-饱和度-值(HSV)色彩空间中的色调映射网络(TMNet),以获得更好的亮度和色彩映射。我们采用改进的Wasserstein生成对抗网络(WGAN-GP)作为基本架构,并进一步介绍了一些改进。采用精心设计的损失函数将色调映射图像推至自然图像流形。
2024-10-09 10:05:53
1178
原创 Unpaired Learning for High Dynamic Range Image Tone Mapping
高动态范围 (HDR) 摄影变得越来越流行,并且可以通过 DSLR 和手机相机实现。虽然深度神经网络 (DNN) 对图像处理的其他领域产生了巨大影响,但由于缺乏生成训练数据所需的地面实况解决方案的明确概念,它们在 HDR 色调映射中的使用受到限制。在本文中,我们描述了一种新的色调映射方法,其独特目标是生成低动态范围 (LDR) 再现,从而最好地再现原生 LDR 图像的视觉特征。这一目标使得能够使用基于不相关的 HDR 和 LDR 图像集的不配对对抗训练,这两种图像都广泛可用且易于获取。
2024-10-08 14:13:38
1056
原创 Deep Tone Mapping Operator for High Dynamic Range Images
计算快速的色调映射算子 (TMO) 可以快速适应各种高动态范围 (HDR) 内容,对于在电影屏幕或标准显示器等各种低动态范围 (LDR) 输出设备上进行可视化至关重要。现有的 TMO 只能成功地对有限数量的 HDR 内容进行色调映射,并且需要进行广泛的参数调整才能产生最佳主观质量的色调映射输出。在本文中,我们通过提出一种快速、无参数且场景自适应的深度色调映射算子(DeepTMO)来解决这个问题,该算子可产生高分辨率和高主观质量的色调映射输出。
2024-09-30 14:32:57
1124
原创 Perceptually Optimized Deep High-Dynamic-RangeImage Tone Mapping
我们描述了一种深度高动态范围(HDR)图像色调映射算子,该算子计算效率高且感知优化。我们首先将 HDR 图像分解为归一化拉普拉斯金字塔,并使用两个深度神经网络 (DNN) 根据归一化表示估计所需色调映射图像的拉普拉斯金字塔。然后,我们通过最小化归一化拉普拉斯金字塔距离(NLPD)(最近提出的感知度量),在 HDR 图像数据库上端到端优化整个方法。定性和定量实验表明,我们的方法生成的图像具有更好的视觉质量,并且在现有的局部色调映射算法中运行速度最快。
2024-09-29 13:47:34
948
原创 TransMEF: A Transformer-Based Multi-Exposure Image Fusion FrameworkUsing Self-Supervised Multi-Task
在本文中,我们提出了 TransMEF,一种基于 Transformer 的多重曝光图像融合框架,使用自监督多任务学习。该框架基于编码器-解码器网络,可以在大型自然图像数据集上进行训练,并且不需要地面实况融合图像。根据多曝光图像的特点,我们设计了三个自监督重建任务,并利用多任务学习同时进行这些任务;通过这个过程,网络可以学习多重曝光图像的特征并提取更通用的特征。此外,为了弥补基于 CNN 的架构中建立远程依赖关系的缺陷,我们设计了一种将 CNN 模块与 Transformer 模块相结合的编码器。
2024-09-29 09:59:31
1046
原创 Deep Guided Learning for Fast Multi-ExposureImage Fusion
我们提出了一种快速多重曝光图像融合(MEF)方法,即 MEF-Net,用于任意空间分辨率和曝光次数的静态图像序列。我们首先将输入序列的低分辨率版本提供给全卷积网络以进行权重图预测。然后,我们使用引导滤波器联合对权重图进行上采样。最终图像通过加权融合计算。与传统的 MEF 方法不同,MEF-Net 通过在全分辨率训练序列数据库上优化感知校准 MEF 结构相似性 (MEF-SSIM) 索引来进行端到端训练。
2024-09-23 18:41:12
932
原创 DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with ExtremeExposure Image Pairs
我们提出了一种新颖的深度学习架构,用于融合静态多重曝光图像。当前的多重曝光融合(MEF)方法使用手工制作的特征来融合输入序列。然而,弱的手工表示对于不同的输入条件并不鲁棒。此外,它们对于极端曝光的图像对表现不佳。因此,非常需要一种对变化的输入条件具有鲁棒性并且能够在没有伪影的情况下处理极端曝光的方法。众所周知,深度表示对于输入条件具有鲁棒性,并且在监督环境中表现出惊人的性能。然而,将深度学习用于 MEF 的绊脚石是缺乏足够的训练数据和为监督提供基础事实的预言机。
2024-09-23 11:03:12
1124
原创 iCAM06: A refined image appearance model for HDR image rendering
一种名为 iCAM06 的新图像外观模型是为高动态范围 (HDR) 图像渲染而开发的。该模型基于 iCAM 框架,结合了人类视觉系统中用于增强对比度的空间处理模型、增强高光和阴影局部细节的光感受器光适应功能以及预测各种颜色外观现象的功能。模型的评估证明 iCAM06 在偏好度和准确性方面均具有一贯良好的 HDR 渲染性能,使 iCAM06 成为通用色调映射算子的良好候选者,并在广泛的图像外观研究和实践中具有进一步的潜在应用。
2024-09-12 14:07:31
1123
原创 Adaptive Residual Interpolation for Color andMultispectral Image Demosaicking
拜耳滤色器阵列的彩色图像去马赛克是获取高质量彩色图像的重要图像处理操作。最近,基于残差插值(RI)的算法已经证明了比传统的基于色差插值的算法更优越的去马赛克性能。在本文中,我们提出了自适应残差插值(ARI),它通过自适应地组合两种基于 RI 的算法并在每个像素处选择合适的迭代次数来改进现有的基于 RI 的算法。这些是根据评估基于 RI 的算法有效性的统一标准来执行的。
2024-09-09 11:22:35
1700
原创 Taming Lookup Tables for Efficient Image Retouching
高清屏幕在终端用户相机、智能手机和电视等边缘设备中的广泛使用,刺激了对图像增强的巨大需求。现有的增强模型通常针对高性能进行优化,但不能减少硬件推断时间和功耗,尤其是在计算和存储资源受限的边缘设备上。为此,我们提出了一种图像颜色增强查找表(ICELUT),它采用查找表(LUT)进行非常有效的边缘推断,而不需要任何卷积神经网络(CNN)。在训练过程中,我们利用逐点(1 × 1)卷积提取颜色信息,同时利用分割的完全连接层来合并全局信息。然后,将这两个组件无缝地转换为LUT,以实现与硬件无关的部署。
2024-08-01 11:06:52
884
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人