文章目录
Order Fulfillment Cycle Time Estimation for On-Demand Food Delivery
KDD’20
1. 概述
本文主要介绍在线外卖配送(on-demand food delivery,OFD)平台上的订单满足时效预测(Order Fulfillment Cycle Time,OFCT)问题。OFCT要在下单前给出,这既是对用户的服务承诺,也是派单和路径规划的决策依据,很重要。
关于外卖的时效预测,之前的研究没有详细讲解过;而ETA方面,由于OFCT给出时尚不清楚什么人走什么路线配送,同时对应于比较难的基于OD的预测;而经典的VRP的解法,需要先验知识和严格假设,因此并不适用。
本文解构了外卖服务整个工作流程,详细介绍了特征工程内容,最后设计了一个回归的预测模型。
2. Challenge
Significantly more influencing factors:影响因素更多。与传统ETA不同,除了天气、交通、时间、地理信息(OD、Route)外,OFCT还新增了餐馆、食物准备、订单动态指派等因素。
Unavailability of critical information:一些关键因子不可获取。OFCT在下单前给出,因此无法拿到之后的信息,如哪个外卖员(起点不同)、实际走什么路线。
3. 外卖订单生命周期
a. OFCT预估:下单前给出OFCT预估值,并且在整个生命周期不再改变。在下单的同时,系统做“派单”和“路径”决策,其中“派单”还有“合单”操作以提高效率。
- 派单不能简单用贪心方法,需要考虑后续的订单情况。这是一个组合优化问题,包括“物流损失”(总时长、总路程)和“用户体验损失”(超时率)两方面。(合单会提高总体效率,但也会损害个体体验)。
b. 外卖员到餐馆等待取餐:需要等食物准备好,可能一次领多个。
c. 外卖员送餐:送到目的地并结束,注意在配送过程中可能会有新的订单到来。
4. 问题定义
令 O \mathcal{O} O为总订单,其中 o ∈ O o\in \mathcal{O} o∈O是其中一个, r o r_o ro为该订单的餐馆, d o d_o do为订单目的地。其中关键时间点有 t o c r e a t i o n , t o a r r i v a l , t o d e p a r t u r e , t o r e c e i v a l t_o^{creation},t_o^{arrival},t_o^{departure},t_o^{receival} tocreation,toarrival,todeparture,toreceival。 O o H ⊆ O \mathcal{O}_o^{\mathbb{H}} \subseteq \mathcal{O} OoH⊆O表示在下单前即完成的订单。
Problem:基于 O o H \mathcal{O}_o^{\mathbb{H}} OoH和在 t o c r e a t i o n t_o^{creation} tocreation前可获取的信息,预测订单 o o o的OFCT值
O F C T o = t o r e c e i v a l − t o c r e a t i o n OFCT_o=t_o^{receival}-t_o^{creation} OFCTo=toreceival−tocreation
另外我们可以将OFCT分为两部分,取餐部分(pickup time,PT)和配送部分(drop-off time,DT)。以及相关的烹饪时间(cook time,CT)
P T o = t o d e p a r t u r e − t o c r e a t i o n D T o = t o r e c e i v a l − t o d e p a r t u r e C T o = t o r e a d y − t o c r e a t i n o PT_o=t_o^{departure}-t_o^{creation}\\ DT_o=t_o^{receival}-t_o^{departure}\\ CT_o=t_o^{ready}-t_o^{creatino} PTo=todeparture−tocreationDTo=toreceival−todepartureCTo=toready−tocreatino
5. 特征工程
5.1 订单信息
- 空间特征:目的地 d o d_o do和餐馆 r o r_o ro的ID、坐标、所属城市和网格
- 时间特征:当日小时、是否工作日
- 订单大小特征:sku数量、订单价格
5.2 聚合特征
- 对历史订单 O o H \mathcal{O}_o^{\mathbb{H}} OoH的DT、PT、OFCT做聚合统计,取[20%、50%、80%]分位数、标准差、均值
- 聚合规则有多种,如按城市、网格、餐馆、时间、最近完成的订单等。
5.3 菜品特征
- 订单的SKU类别集合。每个SKU有一个独立的UID,每个订单 o o o包含一个SKU UIDs集合,同时SKU分为116类(类别取自SKU名称过BERT做分类)。
5.4 烹饪时间特征
-
烹饪时间很难获取,没有人力和价值支持去采集这个数据。因此本文从历史数据中找出一些可信的cooking time, O o C T \mathcal{O}_o^{CT} OoCT(没太看懂,大概是指那些独立的且arrive<ready的订单?)。这个时间再同上做聚合。
-
小件员到店的三种场景。①来早了,等到菜品准备好;②等待所有订单烹饪好再走;③菜品已准备好,来了领取就