线性代数总结

1、行列式

1.        行列式共有 个元素,展开后有 ,可分解为 行列式;

2.        代数余子式的性质:

①、 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0

③、某行(列)的元素乘以该行(列)元素的代数余子式为

3.        代数余子式和余子式的关系:

4.        行列式

上、下翻转或左右翻转,所得行列式为 ,则

顺时针或逆时针旋转 ,所得行列式为 ,则

主对角线翻转后(转置),所得行列式为 ,则

主副角线翻转后,所得行列式为 ,则

5.        行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积

③、上、下三角行列式( ):主对角元素的乘积;

④、 :副对角元素的乘积

⑤、拉普拉斯展开式:

⑥、范德蒙行列式:大指标减小指标的连乘积;

⑦、特征值;

6.        对于 阶行列式 ,恒有: ,其中 阶主子式;

7.        证明 的方法:

①、

②、反证法;

③、构造齐次方程组 ,证明其有非零解;

④、利用秩,证明

⑤、证明0是其特征值;

2、矩阵

1.        阶可逆矩阵:

(是非奇异矩阵);

(是满秩矩阵)

的行(列)向量组线性无关;

齐次方程组 有非零解;

总有唯一解;

等价;

可表示成若干个初等矩阵的乘积;

的特征值全不为0

是正定矩阵;

的行(列)向量组是 的一组基;

中某两组基的过渡矩阵;

2.        对于 阶矩阵  无条件恒成立;

3.       

4.        矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5.        关于分块矩阵的重要结论,其中均 可逆:

,则:

Ⅰ、

Ⅱ、

②、 ;(主对角分块)

③、 ;(副对角分块)

④、 ;(拉普拉斯)

⑤、 ;(拉普拉斯)

3、矩阵的初等变换与线性方程组

1.        一个 矩阵 ,总可经过初等变换化为标准形,其标准形是唯一确定的:

等价类:所有与 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵 ,若

2.        行最简形矩阵:

①、只能通过初等行变换获得;

②、每行首个非0元素必须为1

③、每行首个非0元素所在列的其他元素必须为0

3.        初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、            ,则 可逆,且

、对矩阵 做初等行变化,当 变为 时, 就变成 ,即:

③、求解线形方程组:对于 个未知数 个方程 ,如果 ,则 可逆,且

4.        初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、 ,左乘矩阵 的各行元素;右乘, 的各列元素;

③、对调两行或两列,符号 ,且 ,例如:

④、倍乘某行或某列,符号 ,且 ,例如:

⑤、倍加某行或某列,符号 , ,如:

5.        矩阵秩的基本性质:

①、

②、

③、若 ,则

④、若 可逆,则 ;(可逆矩阵不影响矩阵的秩

⑤、 ;(

⑥、 ;(

⑦、 ;(

⑧、如果 矩阵, 矩阵,且 ,则:(

       向量全部是齐次方程组 解(转置运算后的结论);

       Ⅱ、

⑨、若 均为 阶方阵,则

6.        三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式,再采用结合律;

②、型如 的矩阵:利用二项展开式;

       二项展开式:

       注:Ⅰ、 展开后有 项;

Ⅱ、

Ⅲ、组合的性质:

、利用特征值和相似对角化:

7.        伴随矩阵:

①、伴随矩阵的秩:

②、伴随矩阵的特征值:

③、

8.        关于 矩阵秩的描述:

①、 中有 阶子式不为0 阶子式全部为0;(两句话)

②、 中有 阶子式全部为0

③、 中有 阶子式不为0

9.      线性方程组: ,其中 矩阵,则:

①、 与方程的个数相同,即方程组 个方程;

②、 与方程组得未知数个数相同,方程组 元方程;

10.    线性方程组 的求解:

①、对增广矩阵 进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解;

③、特解:自由变量赋初值后求得;

11.    个未知数 个方程的方程组构成 元线性方程:

②、 向量方程, 矩阵, 个方程, 个未知数)

③、 (全部按列分块,其中 );

④、 (线性表出)

⑤、有解的充要条件: 为未知数的个数或维数

4、向量组的线性相关性

1.        维列向量所组成的向量组 构成 矩阵

维行向量所组成的向量组 构成 矩阵

含有有限个向量的有序向量组与矩阵一一对应;

2.        ①、向量组的线性相关、无关    有、无非零解;(齐次线性方程组)

②、向量的线性表出          是否有解;(线性方程组

③、向量组的相互线性表示 是否有解;(矩阵方程)

3.        矩阵 行向量组等价的充分必要条件是:齐次方程组 同解;( 14)

4.        ( 15)

5.        维向量线性相关的几何意义:

①、 线性相关             

②、 线性相关    坐标成比例或共线(平行);

③、 线性相关 共面;

6.        线性相关与无关的两套定理:

线性相关,则 必线性相关;

线性无关,则 必线性无关;(向量的个数加加减减,二者为对偶)

维向量组 的每个向量上添上 个分量,构成 维向量组

线性无关,则 也线性无关;反之若 线性相关,则 也线性相关;(向量组的维数加加减减)

简言之:无关组延长后仍无关,反之,不确定;

7.        向量组 (个数为 )能由向量组 个数为 )线性表示,且 线性无关,则 (二版 定理7)

向量组 能由向量组 线性表示,则 ;( 定理3

向量组 能由向量组 线性表示

有解;

              定理2

       向量组 能由向量组 等价 定理2推论

8.        方阵 可逆 存在有限个初等矩阵 ,使

①、矩阵行等价: (左乘, 可逆 同解

②、矩阵列等价: (右乘, 可逆);

③、矩阵等价: 可逆);

9.        对于矩阵

①、 行等价,则 的行秩相等;

②、 行等价,则 同解,且 的任何对应的列向量组具有相同的线性相关性;

③、矩阵的初等变换不改变矩阵的秩;

④、矩阵 的行秩等于列秩;

10.    ,则:

①、 的列向量组能由 的列向量组线性表示, 为系数矩阵;

②、 的行向量组能由 的行向量组线性表示, 为系数矩阵;(转置)

11.    齐次方程组 的解一定是 的解,考试中可以直接作为定理使用,而无需证明

①、        只有零解 只有零解;

②、   有非零解 一定存在非零解;

12.    设向量组 可由向量组 线性表示为:( 19结论

       其中 ,且 线性无关,则 组线性无关 ;( 的列向量组具有相同线性相关性

(必要性: ;充分性:反证法)

       注:当 时, 为方阵,可当作定理使用;

13.    ①、对矩阵 ,存在       的列向量线性无关;(

②、对矩阵 ,存在        的行向量线性无关;

14.  线性相关

存在一组不全为0的数 ,使得 成立;(定义)

有非零解,即 有非零解;

,系数矩阵的秩小于未知数的个数;

15.    的矩阵 的秩为 ,则 元齐次线性方程组 的解集 的秩为:

16.    的一个解, 的一个基础解系,则 线性无关;( 33结论

5、相似矩阵和二次型

1.        正交矩阵 (定义),性质:

①、 的列向量都是单位向量,且两两正交,即

②、若 为正交矩阵,则 也为正交阵,且

③、若 正交阵,则 也是正交阵;

       注意:求解正交阵,千万不要忘记施密特正交化单位化

2.        施密特正交化:

      

       ;

3.        对于普通方阵,不同特征值对应的特征向量线性无关;

对于实对称阵,不同特征值对应的特征向量正交;

4.        ①、 等价 经过初等变换得到

可逆;

同型;

②、 合同 ,其中可逆;

                            有相同的正、负惯性指数;

③、 相似

5.        相似一定合同、合同未必相似;

为正交矩阵,则 ,(合同、相似的约束条件不同,相似的更严格);

6.        为对称阵,则 为二次型矩阵;

7.        元二次型 为正定:

的正惯性指数为

合同,即存在可逆矩阵 ,使

的所有特征值均为正数;

       的各阶顺序主子式均大于0

       (必要条件)

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值