4.2 神经网络算法代码实现

参考前一篇文章“4.1 神经网络算法原理” , 用Python实现了一个版本,不过这个版本有一些坑,懒得去调了, 以后会出一个新的版本,这个版本就这样了吧 python代码 NeraulNetwork.py import numpy as np # 双曲正切函数 def tanh(...

2019-03-28 23:45:47

阅读数 14

评论数 0

4.1 神经网络算法原理

神经网络算法介绍: https://blog.csdn.net/qq_37406130/article/details/79157025 AI从入门到放弃:BP神经网络算法推导及代码实现笔记: http://baijiahao.baidu.com/s?id=160352600754596...

2019-03-15 01:30:02

阅读数 57

评论数 0

3.4 svm人脸识别

python代码: from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.model_selection i...

2019-03-13 01:28:46

阅读数 32

评论数 0

3.3 svm预测

python代码: import numpy as np import pylab as pl from sklearn import svm #创建点 np.random.seed(0) X = np.r_[ np.random.rand( 10 ,2 )*10 - [ 10,10] , ...

2019-03-13 01:23:12

阅读数 42

评论数 0

3.2 svm预测

python代码: from sklearn import svm x = [ [0,0] ,[1,1],[2,3],[4,9] ] # 四个点 y = [ 0 ,0 ,1,1 ] # 四个点分类 clf = svm.SVC(kernel="linear"...

2019-03-13 01:13:25

阅读数 20

评论数 0

3.1 SVM原理入门

博客地址: http://www.blogjava.net/zhenandaci/category/31868.html 内容预览:

2019-03-13 01:07:59

阅读数 21

评论数 0

1.2 函数间隔和几何间隔理解2

转载地址:https://www.zhihu.com/question/20466147 SVM是通过超平面将样本分为两类。 在超平面 w*x + b = 0 确定的情况下,|w*x + b | 可以相对地表示点x距离超平面的远近。 对于两类分类问题,如果 w*x + b &...

2019-03-04 23:55:21

阅读数 62

评论数 0

1.1 函数间隔和几何间隔理解1

转载地址:https://www.jianshu.com/p/2e3c0c583e85 1、函数间隔 我们的函数间隔定义为: 可以看到,函数间隔其实就是类别标签乘上了f(x)的值,可以看到,该值永远是大于等于0的,正好符合了距离的概念,距离总不能是负的吧。那么为什么该值可以表示数据点到超...

2019-03-04 23:45:22

阅读数 76

评论数 0

2.3 KNN-采用机器学习库来预测鸢尾花的分类

如下图,一朵花由很多部分组成,比如由有萼片,花被等,而山鸢尾,杂色鸢尾和维吉尼亚鸢尾 它们的区别在于萼片长度和宽度以及花瓣长度和宽度,根据这些特征来判断到底是哪种花 首先导入机器学习库里的数据,数据格式如下 : 机器学习代码: # 导入需要的包 from sklearn im...

2019-03-04 00:33:26

阅读数 57

评论数 0

2.2 KNN算法实现

1 源码下载 下载代码 2 代码截图 3 KNN代码实现 import random import math from operator import itemgetter """ 定义加载数据函数 fileName...

2019-02-27 22:47:12

阅读数 28

评论数 0

2.1 KNN算法原理

一 . K-近邻算法(KNN)概述 最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象...

2019-02-27 22:12:22

阅读数 30

评论数 0

1.2 决策树代码实现

1 代码结构图 2  源码下载地址 下载源码 3  代码实现 from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import p...

2019-02-23 10:46:40

阅读数 65

评论数 0

1.1 决策树算法原理

1. 什么是决策树/判定树(decision tree)?        判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。     2.  机器学习中分类方法中的一个重要算法 ...

2019-02-21 01:42:48

阅读数 41

评论数 0

(3) 用java编译器实现一个简单的编译器-语法分析

转载地址:http://blog.csdn.net/tyler_download/article/details/50708807 视频地址:http://study.163.com/course/courseLearn.htm?courseId=1002830012#/learn/video?l...

2018-01-01 12:04:22

阅读数 959

评论数 0

(2) 用java实现一个简易编译器1-词法解析入门

转载地址 : http://blog.csdn.net/tyler_download/article/details/50668983/ 视频地址 : http://study.163.com/course/courseLearn.htm?courseId=1002830012#/learn/v...

2018-01-01 11:54:56

阅读数 1110

评论数 1

(一)编译器实现资料

1  http://study.163.com/course/introduction.htm?courseId=1002830012 2 http://blog.csdn.net/tyler_download/article/details/54311657

2017-12-31 10:22:09

阅读数 274

评论数 0

TortoiseSVN设置比较工具为BeyondCompare

设置 http://blog.csdn.net/mrluzle/article/details/70140956 

2017-12-25 19:14:15

阅读数 187

评论数 0

四 希尔排序

希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。   该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对...

2017-12-17 02:15:22

阅读数 188

评论数 0

三 插入排序

通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应的位置并插入。 插入排序非常类似于整扑克牌 在开始摸牌时,左手是空的,牌面朝下放在桌上。接着,一次从桌上摸起一张牌,并将它插入到左手一把牌中的正确位置上。为了找到这张牌的正确位置,要将它与手中已有的牌从右...

2017-12-16 23:36:46

阅读数 119

评论数 0

二 选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪...

2017-12-14 00:33:15

阅读数 122

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭