在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 当为-1 -1时表示输入结束。 随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C< 2^31)。
Example Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Example Output
2
1
这道题和n皇后问题很像,不过这里放置的个数不是n,故从最后一行向上处理,代码和n皇后真的差不多,,先放前者的代码吧
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 20;
int n, cnt;
char map[N][N];
bool vis[N]; //记录当前列是否已放置
void DFS(int row)
{
if(row == n) //最后一行已放置完毕,摆法加一
{
cnt ++;
return;
}
for(int i = 0; i < n; i++) //访问每一行的每一列,看是否能放置皇后
{
if(!vis[i]) //可以放置
{
vis[i] = 1; //当前列已放置,不能再放了
DFS(row + 1);//递归处理接下来的一行
vis[i] = 0; //递归回退,去掉标记
}
}
}
int main()
{
while(~scanf("%d", &n))
{
memset(vis, 0, sizeof(vis));
cnt = 0;
DFS(0);
printf("%d\n", cnt);
}
return 0;
}
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 20;
int n, k;
int cnt, num;
char map[N][N];
bool vis[N];
void DFS(int row)
{
if(num == k) //已摆放的数量等于k,摆法加一
{
cnt ++;
return;
}
if(row == n) //到达边界
return;
DFS(row + 1); //一直递归,从最后一行向上处理
for(int i = 0; i < n; i++) //这里和n皇后的处理一样
{
if(!vis[i] && map[row][i] == '#')
{
vis[i] = 1;
num ++;
DFS(row+1);
vis[i] = 0;
num --;
}
}
}
int main()
{
while(~scanf("%d%d", &n, &k))
{
if(n == -1 && k == -1)
break;
memset(vis, 0, sizeof(vis));
for(int i = 0; i < n; i++)
scanf("%s", map[i]);
cnt = 0;
num = 0;
DFS(0);
printf("%d\n", cnt);
}
return 0;
}