一、 默认常量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认数组长度16
static final int MAXIMUM_CAPACITY = 1 << 30; // 最大数组容量2^30(为什么不能是2^31,因为2^31意味着需要占用32位,而最高位一般标识正负状态值)
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认负载比
static final int TREEIFY_THRESHOLD = 8; // 链表转红黑树的阈值
static final int UNTREEIFY_THRESHOLD = 6; // 扩容时红黑树转链表的阈值
二、构造函数
1.
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 将该实例默认负载比赋值
}
2.
//显示地传入初始容量大小
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);//调用另一个构造函数,初始容量大小为用户定义,负载比用默认值
}
3.
//参数:初始化大小,负载比
public HashMap(int initialCapacity, float loadFactor) {
//如果默认大小小于0,报参数不合法
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//如果大于规定的最大容量,则将初始化大小直接重新定义为默认最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//如果负载比小于等于0或者为不合法的小数,则报错
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//将该实例负载比定义为传入的负载比
this.loadFactor = loadFactor;
//threshold是下次扩容阀值(容量*加载因子),在table没有初始化前,存储的是容量值,给该实例的扩容值因子赋值
this.threshold = tableSizeFor(initialCapacity);
}
4.
//可接受传入map
public HashMap(Map<? extends K, ? extends V> m) {
//将该实例的默认负载比设置为默认值
this.loadFactor = DEFAULT_LOAD_FACTOR;
//将map赋值到该实例中
putMapEntries(m, false);
}
附上面调用的一些方法的分析:
//此方法返回一个不小于传入数值的2的最小倍数 ;目的是为了保证有参构造传入的初始化数组长度是>=cap的最小2的k次幂。对n不断地无符号右移并且位或可以将n从最高位为1开始的所有右侧位数变成1,最后n+1即为大于n的最小2的k次幂,每一次移m位会将2m位全变成1
static final int tableSizeFor(int cap) {
//为了保证如果cap本身就是2^k 那么结果也将是其本身
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;//(为什么要判断n<0,因为cap可以为0传入,当cap为0的时候就会出现n<0的情况)
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // 说明是拷贝构造函数来调用的putMapEntries,或者构造后还没放过任何元素
//算出来一个容量,使得size刚好不大于阈值,但这样有可能会算出小数来,但作为容量就必须向上取整,所以这里要加1
float ft = ((float)s / loadFactor) + 1.0F;
//如果小于最大容量,就进行截断;否则就赋值为最大容量
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
//如果t > 当前暂存的容量(因为table未初始化,容量会暂放到阈值上)时,用t重新算出初始化容量,再放到阈值上
if (t > threshold)
threshold = tableSizeFor(t);
}
//说明table已经初始化过了;判断传入map的size是否大于当前map的threshold,如果是,则必须要resize,因为即便原来的table是空的,存放这些新的数据也免不了扩容;这种情况属于预先扩大容量,再put元素
else if (s > threshold)
resize();
//循环里的putVal可能也会触发resize
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
//逐一插入新元素
putVal(hash(key), key, value, false, evict);
}
}
}
putVal方法在下面的插入数据时分析。
三、 插入数据
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果存储元素的table为空,则进行必要字段的初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; // 获取长度(16)
// 如果根据hash值获取的结点为空,则新建一个结点
if ((p = tab[i = (n - 1) & hash]) == null) // 此处 & 代替了 % (除法散列法进行散列)
tab[i] = newNode(hash, key, value, null);
// 这里的p结点是根据hash值算出来对应在数组中的元素
else {
Node<K,V> e; K k;
// 如果新插入的结点和table中p结点的hash值,key值相同的话
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果是红黑树结点的话,进行红黑树插入
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
// 代表这个单链表只有一个头部结点,则直接新建一个结点即可
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 链表长度大于8时,将链表转红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 及时更新p
p = e;
}
}
// 如果存在这个映射就覆盖
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 判断是否允许覆盖,并且value是否为空
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); // 回调以允许LinkedHashMap后置操作
return oldValue;
}
}
++modCount; // 更改操作次数
if (++size > threshold) // 大于临界值
// 将数组大小设置为原来的2倍,并将原先的数组中的元素放到新数组中
// 因为有链表,红黑树之类,因此还要调整他们
resize();
// 回调以允许LinkedHashMap后置操作
afterNodeInsertion(evict);
return null;
}
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //当前所有元素所在的数组,称为老的元素数组
int oldCap = (oldTab == null) ? 0 : oldTab.length; //老的元素数组长度
int oldThr = threshold; // 老的扩容阀值设置
int newCap, newThr = 0; // 新数组的容量,新数组的扩容阀值都初始化为0
if (oldCap > 0) { // 如果老数组长度大于0,说明已经存在元素
// PS1
if (oldCap >= MAXIMUM_CAPACITY) { // 如果数组元素个数大于等于限定的最大容量(2的30次方)
// 扩容阀值设置为int最大值(2的31次方 -1 ),因为oldCap再乘2就溢出了。
threshold = Integer.MAX_VALUE;
return oldTab; // 返回老的元素数组
}
/*
* 如果数组元素个数在正常范围内,那么新的数组容量为老的数组容量的2倍(左移1位相当于乘以2)
* 如果扩容之后的新容量小于最大容量 并且 老的数组容量大于等于默认初始化容量(16),那么新数组的扩容阀值设置为老阀值的2倍。(老的数组容量大于16意味着:要么构造函数指定了一个大于16的初始化容量值,要么已经经历过了至少一次扩容)
*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// PS2
// 运行到这个else if 说明老数组没有任何元素
// 如果老数组的扩容阀值大于0,那么设置新数组的容量为该阀值
// 这一步也就意味着构造该map的时候,指定了初始化容量。
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 能运行到这里的话,说明是调用无参构造函数创建的该map,并且第一次添加元素
newCap = DEFAULT_INITIAL_CAPACITY; // 设置新数组容量 为 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 设置新数组扩容阀值为 16*0.75 = 12。0.75为负载因子(当元素个数达到容量了4分之3,那么扩容)
}
// 如果扩容阀值为0 (PS2的情况)
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE); // 参见:PS2
}
threshold = newThr; // 设置map的扩容阀值为 新的阀值
@SuppressWarnings({"rawtypes","unchecked"})
// 创建新的数组(对于第一次添加元素,那么这个数组就是第一个数组;对于存在oldTab的时候,那么这个数组就是要需要扩容到的新数组)
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; // 将该map的table属性指向到该新数组
if (oldTab != null) { // 如果老数组不为空,说明是扩容操作,那么涉及到元素的转移操作
for (int j = 0; j < oldCap; ++j) { // 遍历老数组
Node<K,V> e;
if ((e = oldTab[j]) != null) { // 如果当前位置元素不为空,那么需要转移该元素到新数组
oldTab[j] = null; // 释放掉老数组对于要转移走的元素的引用(主要为了使得数组可被回收)
if (e.next == null) // 如果元素没有有下一个节点,说明该元素不存在hash冲突
// PS3
// 把元素存储到新的数组中,存储到数组的哪个位置需要根据hash值和数组长度来进行取模
// 【hash值 % 数组长度】 = 【 hash值 & (数组长度-1)】
// 这种与运算求模的方式要求 数组长度必须是2的N次方,但是可以通过构造函数随意指定初始化容量呀,如果指定了17,15这种,岂不是出问题了就?没关系,最终会通过tableSizeFor方法将用户指定的转化为大于其并且最相近的2的N次方。 15 -> 16、17-> 32
newTab[e.hash & (newCap - 1)] = e;
// 如果该元素有下一个节点,那么说明该位置上存在一个链表了(hash相同的多个元素以链表的方式存储到了老数组的这个位置上了)
// 例如:数组长度为16,那么hash值为1(1%16=1)的和hash值为17(17%16=1)的两个元素都是会存储在数组的第2个位置上(对应数组下标为1),当数组扩容为32(1%32=1)时,hash值为1的还应该存储在新数组的第二个位置上,但是hash值为17(17%32=17)的就应该存储在新数组的第18个位置上了。
// 所以,数组扩容后,所有元素都需要重新计算在新数组中的位置。
else if (e instanceof TreeNode) // 如果该节点为TreeNode类型
((TreeNode<K,V>)e).split(this, newTab, j, oldCap); // 此处单独展开讨论
else { // preserve order
Node<K,V> loHead = null, loTail = null; // 按命名来翻译的话,应该叫低位首尾节点
Node<K,V> hiHead = null, hiTail = null; // 按命名来翻译的话,应该叫高位首尾节点
// 以上的低位指的是新数组的 0 到 oldCap-1 、高位指定的是oldCap 到 newCap - 1
Node<K,V> next;
// 遍历链表
do {
next = e.next;
// 这一步判断好狠,拿元素的hash值 和 老数组的长度 做与运算
// PS3里曾说到,数组的长度一定是2的N次方(例如16),如果hash值和该长度做与运算,那么该hash值可参与计算的有效二进制位就是和长度二进制对等的后几位,如果结果为0,说明hash值中参与计算的对等的二进制位的最高位一定为0.
//因为数组长度的二进制有效最高位是1(例如16对应的二进制是10000),只有*..0**** 和 10000 进行与运算结果才为00000(*..表示不确定的多个二进制位)。又因为定位下标时的取模运算是以hash值和长度减1进行与运算,所以下标 = (*..0**** & 1111) 也= (*..0**** & 11111) 。1111是15的二进制、11111是16*2-1 也就是31的二级制(2倍扩容)。
// 所以该hash值再和新数组的长度取摸的话mod值也不会放生变化,也就是说该元素的在新数组的位置和在老数组的位置是相同的,所以该元素可以放置在低位链表中。
if ((e.hash & oldCap) == 0) {
// PS4
if (loTail == null) // 如果没有尾,说明链表为空
loHead = e; // 链表为空时,头节点指向该元素
else
loTail.next = e; // 如果有尾,那么链表不为空,把该元素挂到链表的最后。
loTail = e; // 把尾节点设置为当前元素
}
// 如果与运算结果不为0,说明hash值大于老数组长度(例如hash值为17)
// 此时该元素应该放置到新数组的高位位置上
// 例:老数组长度16,那么新数组长度为32,hash为17的应该放置在数组的第17个位置上,也就是下标为16,那么下标为16已经属于高位了,低位是[0-15],高位是[16-31]
else { // 以下逻辑同PS4
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) { // 低位的元素组成的链表还是放置在原来的位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) { // 高位的元素组成的链表放置的位置只是在原有位置上偏移了老数组的长度个位置。
hiTail.next = null;
newTab[j + oldCap] = hiHead; // 例:hash为 17 在老数组放置在0下标,在新数组放置在16下标; hash为 18 在老数组放置在1下标,在新数组放置在17下标;
}
}
}
}
}
return newTab; // 返回新数组
}
四、remove方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
/**
* 方法为final,不可被覆写,子类可以通过实现afterNodeRemoval方法来增加自己的处理逻辑(解析中有描述)
*
* @param hash key的hash值,该值是通过hash(key)获取到的
* @param key 要删除的键值对的key
* @param value 要删除的键值对的value,该值是否作为删除的条件取决于matchValue是否为true
* @param matchValue 如果为true,则当key对应的键值对的值equals(value)为true时才删除;否则不关心value的值
* @param movable 删除后是否移动节点,如果为false,则不移动
* @return 返回被删除的节点对象,如果没有删除任何节点则返回null
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index; // 声明节点数组、当前节点、数组长度、索引值
/*
* 如果 节点数组tab不为空、数组长度n大于0、根据hash定位到的节点对象p(该节点为 树的根节点 或 链表的首节点)不为空
* 需要从该节点p向下遍历,找到那个和key匹配的节点对象
*/
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v; // 定义要返回的节点对象,声明一个临时节点变量、键变量、值变量
// 如果当前节点的键和key相等,那么当前节点就是要删除的节点,赋值给node
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
/*
* 到这一步说明首节点没有匹配上,那么检查下是否有next节点
* 如果没有next节点,就说明该节点所在位置上没有发生hash碰撞, 就一个节点并且还没匹配上,也就没得删了,最终也就返回null了
* 如果存在next节点,就说明该数组位置上发生了hash碰撞,此时可能存在一个链表,也可能是一颗红黑树
*/
else if ((e = p.next) != null) {
// 如果当前节点是TreeNode类型,说明已经是一个红黑树,那么调用getTreeNode方法从树结构中查找满足条件的节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
// 如果不是树节点,那么就是一个链表,只需要从头到尾逐个节点比对即可
else {
do {
// 如果e节点的键是否和key相等,e节点就是要删除的节点,赋值给node变量,调出循环
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
// 走到这里,说明e也没有匹配上
p = e; // 把当前节点p指向e,这一步是让p存储的永远下一次循环里e的父节点,如果下一次e匹配上了,那么p就是node的父节点
} while ((e = e.next) != null); // 如果e存在下一个节点,那么继续去匹配下一个节点。直到匹配到某个节点跳出 或者 遍历完链表所有节点
}
}
/*
* 如果node不为空,说明根据key匹配到了要删除的节点
* 如果不需要对比value值 或者 需要对比value值但是value值也相等
* 那么就可以删除该node节点了
*/
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) // 如果该节点是个TreeNode对象,说明此节点存在于红黑树结构中,调用removeTreeNode方法(该方法单独解析)移除该节点
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p) // 如果该节点不是TreeNode对象,node == p 的意思是该node节点就是首节点
tab[index] = node.next; // 由于删除的是首节点,那么直接将节点数组对应位置指向到第二个节点即可
else // 如果node节点不是首节点,此时p是node的父节点,由于要删除node,所有只需要把p的下一个节点指向到node的下一个节点即可把node从链表中删除了
p.next = node.next;
++modCount; // HashMap的修改次数递增
--size; // HashMap的元素个数递减
afterNodeRemoval(node); // 调用afterNodeRemoval方法,该方法HashMap没有任何实现逻辑,目的是为了让子类根据需要自行覆写
return node;
}
}
return null;
五、get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value; //根据key及其hash值查询node节点,如果存在,则返回该节点的value值。
}
final Node<K,V> getNode(int hash, Object key) { //根据key搜索节点的方法。记住判断key相等的条件:hash值相同 并且 符合equals方法。
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 && //根据输入的hash值,可以直接计算出对应的下标(n - 1)& hash,缩小查询范围,如果存在结果,则必定在table的这个位置上。
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k)))) //判断第一个存在的节点的key是否和查询的key相等。如果相等,直接返回该节点。
return first;
if ((e = first.next) != null) { //遍历该链表/红黑树直到next为null。
if (first instanceof TreeNode) //当这个table节点上存储的是红黑树结构时,在根节点first上调用getTreeNode方法,在内部遍历红黑树节点,查看是否有匹配的TreeNode。
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash && //当这个table节点上存储的是链表结构时,用跟第11行同样的方式去判断key是否相同。
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null); //如果key不同,一直遍历下去直到链表尽头,e.next == null。
}
}
return null;
}
附:1.插入和扩容流程图
2.删除remove流程图
参考:https://blog.csdn.net/weixin_42340670/article/details/80503517