剪绳子

剪绳子

1.题目描述

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例1
在这里插入图片描述

2.方法一(动态规划)

f ( n ) = m a x ( f ( i ) ∗ f ( n − i ) ) f(n) = max(f(i)*f(n-i)) f(n)=max(f(i)f(ni))

3.代码

class Solution {
public:
    int cutRope(int number) {
        vector<int> res;
        res.resize(number+1,0);
        res[0] = 0;
        res[1] = 1;
        res[2] = 2;
        res[3] = 3;
        if(number < 2){
            return 0;
        }
        if(number == 2){
            return 1;
        }
        if(number == 3){
            return 2;
        }
        int max_val = 0;
        for(int i = 4;i <= number;++i){
            max_val = 0;
            for(int j = 1;j <= i/2;++j){
                int product = res[j]*res[i-j];
                max_val = max(max_val,product);
                res[i] = max_val;
            }
        }
        max_val = res[number];
        return max_val;
    }
};

4.复杂度分析

时间复杂度:O(n^2)
空间复杂度:O(n)

5.方法二(贪心法)

当n >= 5时,尽可能多的剪长度为3的绳子,当剩下的绳子长度为4时,把绳子剪成两段长度为2的绳子。
证明:
1.当n >= 5时,可以证明2(n-2) > n并且3(n-3) > n。也就是说,当剩下绳子的长度大于或者等于5的时候,就把它剪成长度为3或者2的绳子。另外当n>=5时,3(n-3) >= 2(n-2),因此应该尽可能多的剪成长度为3的绳子。
2.当n = 4时, 2 ∗ 2 > 1 ∗ 3 2*2 > 1*3 22>13

6.代码

class Solution {
public:
    int cutRope(int number) {
        if(number < 2){
            return 0;
        }
        if(number ==  2){
            return 1;
        }
        if(number == 3){
            return 2;
        }
        int timeOf3 = number / 3;
        if(number - 3*timeOf3 == 1){
            timeOf3 -= 1;
        }
        int timeOf2 = (number - 3* timeOf3) / 2;
        return pow(3,timeOf3)*pow(2,timeOf2);
    }
};

7.复杂度分析

时间复杂度:O(1)
空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值