剪绳子
1.题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例1
2.方法一(动态规划)
f ( n ) = m a x ( f ( i ) ∗ f ( n − i ) ) f(n) = max(f(i)*f(n-i)) f(n)=max(f(i)∗f(n−i))
3.代码
class Solution {
public:
int cutRope(int number) {
vector<int> res;
res.resize(number+1,0);
res[0] = 0;
res[1] = 1;
res[2] = 2;
res[3] = 3;
if(number < 2){
return 0;
}
if(number == 2){
return 1;
}
if(number == 3){
return 2;
}
int max_val = 0;
for(int i = 4;i <= number;++i){
max_val = 0;
for(int j = 1;j <= i/2;++j){
int product = res[j]*res[i-j];
max_val = max(max_val,product);
res[i] = max_val;
}
}
max_val = res[number];
return max_val;
}
};
4.复杂度分析
时间复杂度:O(n^2)
空间复杂度:O(n)
5.方法二(贪心法)
当n >= 5时,尽可能多的剪长度为3的绳子,当剩下的绳子长度为4时,把绳子剪成两段长度为2的绳子。
证明:
1.当n >= 5时,可以证明2(n-2) > n并且3(n-3) > n。也就是说,当剩下绳子的长度大于或者等于5的时候,就把它剪成长度为3或者2的绳子。另外当n>=5时,3(n-3) >= 2(n-2),因此应该尽可能多的剪成长度为3的绳子。
2.当n = 4时,
2
∗
2
>
1
∗
3
2*2 > 1*3
2∗2>1∗3
6.代码
class Solution {
public:
int cutRope(int number) {
if(number < 2){
return 0;
}
if(number == 2){
return 1;
}
if(number == 3){
return 2;
}
int timeOf3 = number / 3;
if(number - 3*timeOf3 == 1){
timeOf3 -= 1;
}
int timeOf2 = (number - 3* timeOf3) / 2;
return pow(3,timeOf3)*pow(2,timeOf2);
}
};
7.复杂度分析
时间复杂度:O(1)
空间复杂度:O(1)