50. Pow(x, n)

1.题目描述

实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
在这里插入图片描述
示例 2:
在这里插入图片描述
示例 3:
在这里插入图片描述
说明:
1.-100.0 < x < 100.0
2.n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。

2.快速幂+递归

「快速幂算法」的本质是分治算法。举个例子,如果我们要计算 x 64 x^{64} x64,我们可以按照:
x → x 2 → x 4 → x 8 → x 16 → x 32 → x 64 x \to x^2 \to x^4 \to x^8 \to x^{16} \to x^{32} \to x^{64} xx2x4x8x16x32x64
的顺序,从 x 开始,每次直接把上一次的结果进行平方,计算 6 次就可以得到 x 64 x^{64} x64的值,而不需要对 x 乘 63 次 x。再举一个例子,如果我们要计算 x 77 x^{77} x77 我们可以按照:
x → x 2 → x 4 → x 9 → x 1 9 → x 3 8 → x 77 x \to x^2 \to x^4 \to x^9 \to x^19 \to x^38 \to x^{77} xx2x4x9x19x38x77
的顺序,在 x → x 2 , x 2 → x 4 → , x 19 → x 38 x \to x^2,x^2 \to x^4 \to,x^{19} \to x^{38} xx2x2x4x19x38
这些步骤中,我们直接把上一次的结果进行平方,而在 x 4 → x 9 , x 9 → x 19 , x 38 → x 77 x^4 \to x^9,x^9 \to x^{19},x^{38} \to x^{77} x4x9x9x19x38x77
这些步骤中,我们把上一次的结果进行平方后,还要额外乘一个 x。
直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘 x。但如果我们从右往左看,分治的思想就十分明显了:
当我们要计算 x n x^n xn 时,我们可以先递归地计算出 y = x ⌊ n / 2 ⌋ y = x^{\lfloor n/2 \rfloor} y=xn/2,其中 ⌊ a ⌋ \lfloor a \rfloor a表示对 a 进行下取整;根据递归计算的结果,如果 n n n 为偶数,那么 x n = y 2 x^n = y^2 xn=y2;如果 n 为奇数,那么 x n = y 2 ∗ x x^n = y^2 * x xn=y2x;递归的边界为 n = 0 n = 0 n=0,任意数的 0 次方均为 1。

3.代码

class Solution {
public:
    double quickMul(double x, long long N){
        if(N == 0){
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y*y : y*y*x;
    }
    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

4.复杂度分析

时间复杂度:O(logn),即为递归的层数。
空间复杂度:O(logn),即为递归的层数。这是由于递归的函数调用会使用栈空间。

5.快速幂+迭代

每个额外乘的 x 在之后都会被平方若干次。而这些指数 1,4,8 和 64,恰好就对应了 77 的二进制表示 ( 1001101 ) 2 (1001101)_2 (1001101)2中的每个 1!
这样以来,我们从 x 开始不断地进行平方,得到 x 2 , x 4 , x 8 , x 16 , ⋯ x^2, x^4, x^8, x^{16}, \cdots x2,x4,x8,x16,如果 n 的第 k 个(从右往左,从 0 开始计数)二进制位为 1,那么我们就将对应的贡献 x 2 k x^{2^k} x2k计入答案。

6.代码

class Solution {
public:
    double quickMul(double x, long long N){
        double res = 1.0;
        double x_contribute = x;
        
        while(N > 0){
            //如果二进制最后一位为1
            if(N % 2 == 1){
                res *= x_contribute;
            }
            x_contribute *= x_contribute;
            N /= 2;
        }
        return res;
    }
    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

7.复杂度分析

时间复杂度:O(logn),即为对 n 进行二进制拆分的时间复杂度。
空间复杂度:O(1)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值