1.题目描述
给你一个字符串 S、一个字符串 T 。请你设计一种算法,可以在 O(n) 的时间复杂度内,从字符串 S 里面找出:包含 T 所有字符的最小子串。
示例:
提示:
1.如果 S 中不存这样的子串,则返回空字符串 “”。
2.如果 S 中存在这样的子串,我们保证它是唯一的答案。
2.思路(滑动窗口)
用left,right表示滑动窗口的左边界和右边界,通过改变left,right来扩展和收缩滑动窗口,可以想象成一个窗口在字符串上游走,当这个窗口包含的元素满足条件,即包含字符串T的所有元素,记录下这个滑动窗口的长度right-left,这些长度中的最小值就是要求的结果。
步骤一
不断增加right使滑动窗口增大,直到窗口包含了T的所有元素
步骤二
不断增加left使滑动窗口缩小,因为是要求最小字串,所以将不必要的元素排除在外,使长度减小,直到碰到一个必须包含的元素,这个时候不能再扔了,再扔就不满足条件了,记录此时滑动窗口的长度,并保存最小值
步骤三
让left再增加一个位置,这个时候滑动窗口肯定不满足条件了,那么继续从步骤一开始执行,寻找新的满足条件的滑动窗口,如此反复,直到j超出了字符串S范围。
3.代码
class Solution {
public:
string minWindow(string s, string t) {
string res = "";
vector<int> m(128);
int left = 0, right = 0, need = t.size(), minStart = 0, minLen = INT_MAX;
for(auto &c : t){
m[c]++;
}
while(right < s.size()){
if(m[s[right]] > 0){//窗口右移,被包含一个t中的字符,need--
need--;
}
m[s[right]]--;
right++;
while(need == 0){
if(right - left < minLen){
minStart = left;
minLen = right - left;
}
m[s[left]]++;//窗口左移
if(m[s[left]] > 0){
need++;
}
left++;
}
}
if(minLen != INT_MAX){
res = s.substr(minStart, minLen);
}
return res;
}
};
4.复杂度分析
时间复杂度:O(n),
空间复杂度:O(k),k为S和T中的字符集合。