【每日算法】快速幂

本文介绍了数值的整数次方的计算,重点讲解了快速幂算法,包括处理负数指数、0次幂的特殊情况,以及如何通过快速幂提高效率。提供了递归和非递归两种版本的代码实现,并提到了其在矩阵快速幂中的应用。
摘要由CSDN通过智能技术生成

数值的整数次方

实现函数

double Power(double base, int n) 

求base的n次方,不得使用库函数,同时不需要考虑大数问题。

Tips

问题本身很直观,但是越简单的题越需要细心思考,包括边界问题和效率问题,如果不能考虑到以下3点,就无法给出令人满意的答案:

  1. 考虑n为负数的情况;
  2. 考虑base为0的情况;
  3. 当n较大时,如何保证效率?

分析

针对上面3个问题,我们逐一解答:

1.在计算的时候,我们统一计算base的 abs(n)次方,最后如果是负数,答案应该取倒数;

2.如果base为0,则它不能做分母,此时若n<0,则我们应该返回错误信息。

关于返回错误信息,一般有以下方法:

  • 通过返回值;
  • 通过全局变量;
  • 抛出异常;

在这里,我们注意到返回值本身可以取任意值,所以不能单纯靠返回值;如果仅设置全局变量,那么每次计算之后都有检查,比较麻烦;我们可以选择返回值+全局变量的形式来返回错误:

如果有错,返回0,且设置全局变量。

3.当n较大时,可使用快速幂:

若n为偶数, base^n = base^(n/2) * base^(n/2)࿱

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值