mongodb mapreduce使用总结



   文章来自本人个人博客: mongodb mapreduce使用总结 ​

   大家都知道,mongodb是一个非关系型数据库,也就是说,mongodb数据库中的每张表是独立存在的,表与表之间没有任何依赖关系。在mongodb中,除了各种CRUD语句之外,还给我们提供了聚合和mapreduce统计的功能,这篇文章主要来跟大家聊聊mongodb的mapreduce的操作。

    ​mapreduce的概念我就不赘述了,大家自己去查查吧。

    ​在mongodb中,mapreduce的语法如下:

    ​

db.table.mapReduce(
        map,
        reduce,
        {
            query: query,
            out: out,    //指定结果集以什么方式存储,可选参数包括:
                        //replace:如果文档(table)存在,则替换table,
                        //merge:如果文档中存在记录,则覆盖已存在的文档记录
                        //reduce: 如果文档中存在相同key的记录了,则先计算两条记录,然后覆盖旧记录
                        // {inline:1}  在内存中存储记录,不写入磁盘(用户数据量少的计算)
            sort: sort,
            limit: limit,
            finalize: function  //这个function主要用来在存入out之前可以修改数据,function(key,values) { 
                                //return modifiedValues;}
            scope: document,    //指定reduce可访问的文档范围
            jsMode:boolean      //指定是否在map和ruduce之间立即将数据转换为Bason格式,默认为false
                                //如果想设置为true,则要记住官方我那当的注意事项:
                                //You can only use jsMode for result sets with fewer than
                                //500,000 distinct key arguments to the mapper’s emit()function.
            verbose:boolean     //是否在结果集中包含timing信息,默认是包含的
        }
    )

    ​在做mongodb的mapreduce时,要确保你的query是可以利用到索引的,不然在大数据量的统计下,将会托夸整个数据库,如果确实没办法建索引,那么就在结果集中判断一些不符合条件的数据,而去掉query。

    ​mapreduce的语法其实很简单,只不过这里面有几点需要注意一下:

    ​    ​1.在map中,mongodb是每1000条数据就reduce一次

    ​    ​2.在map中,如果你想统计一个数据之和,需要这样写:

    ​    ​    ​emit(key:this.key,sum:0})

    ​    ​    ​然后再在reduce里需要将上一次的sum迭代累加起来,然后return {sum:sum};如果不这样做,你计算出来的数据总是最后不足1000条数据之后统计出来的,而前面的数据就都丢失了。

    ​   3.如果能不用mapreduce,就不用,程序能够统计的,就不要用mongodb频繁统计。

    ​   4.mapreduce的结果集的数据格式是:{_id:key,value:{}},因此如果想直接使用这个表的话,最好再重新将数据格式整理一次,​尽量将数据放在最上次,而不是再用value.xxx去查询。

    ​这里附上统计我们网站的用户发表内容的数量的mapreduce,仅供一种代码格式的参考价值吧:

    ​

var db = connect('127.0.0.1:27017/test');
db.aAccounttemp.drop();
var map = function() {
    emit(this.accountId, 
        {sum:0,
            reblogFlag:this.reblogFlag,dashboardFlag:this.dashboardFlag,dashboardType:this.dashboardType,
            photoNum:0,postNum:0,reblogNum:0,videoNum:0,videoShortNum:0, musicNum:0,
            questionNum:0,appNum:0, dialogNum:0});
}

var reduce = function(key,values) {

    var sum = 0;
    var photoNum = 0;
    var postNum = 0;
    var reblogNum = 0;
    var videoNum = 0;
    var videoShortNum = 0;
    var musicNum = 0;
    var questionNum = 0;
    var appNum = 0;
    var dialogNum = 0;
    for (var i = 0; i < values.length; i++) {
        var data = values[i];
        var reblogFlag = data.reblogFlag;
        var dashboardFlag = data.dashboardFlag;
        var dashboardType = data.dashboardType;
        sum += data.sum;
        photoNum += data.photoNum;
        reblogNum += data.reblogNum;
        postNum += data.postNum;
        videoNum += data.videoNum;
        musicNum += data.musicNum;
        videoShortNum += data.videoShortNum;
        questionNum += data.questionNum;
        appNum += data.appNum;
        dialogNum += data.dialogNum;
        if(!reblogFlag) {
            if(dashboardFlag) {
                sum += 1;
                if(dashboardType == 10) {
                    postNum += 1;
                } else if(dashboardType == 20) {
                    photoNum += 1;
                } else if(dashboardType == 30) {
                    videoNum += 1;
                } else if(dashboardType == 31) {
                    videoShortNum += 1;
                } else if(dashboardType == 40) {
                    musicNum += 1;
                } else if(dashboardType == 60) {
                    questionNum += 1;
                } else if(dashboardType == 100) {
                    appNum += 1;
                } else if(dashboardType == 91) {
                    dialogNum += 1;
                }
            } else {
                if(dashboardType == 20) {
                    photoNum += 1;
                }
            }
        } else if(reblogFlag && dashboardFlag) {
            reblogNum += 1;
        }
        
    }
    return {sum:NumberInt(sum),reblogNum:NumberInt(reblogNum),postNum:NumberInt(postNum),photoNum:NumberInt(photoNum),
        videoNum:NumberInt(videoNum),videoShortNum:NumberInt(videoShortNum),
        musicNum:NumberInt(musicNum), questionNum:NumberInt(questionNum),appNum:NumberInt(appNum),dialogNum:NumberInt(dialogNum)};
};
db.getMongo().setSlaveOk();
db.dashboard_basic.mapReduce(
        map,
        reduce,
        {
            out:{merge:'aAccounttemp'}
        }
    );
var results = db.aAccounttemp.find();
//重新整理数据格式,存入正规表中
while (results.hasNext()) {
    var obj = results.next();
    var value = obj.value;
    var sum = NumberInt(value.sum);
    var reblogNum = NumberInt(value.reblogNum);
    var postNum = NumberInt(value.postNum);
    var photoNum = NumberInt(value.photoNum);
    var videoNum = NumberInt(value.videoNum);
    var videoShortNum = NumberInt(value.videoShortNum);
    var musicNum  = NumberInt(value.musicNum);
    var questionNum = NumberInt(value.questionNum);
    var appNum = NumberInt(value.appNum);
    var dialogNum = NumberInt(value.dialogNum);
    var accountId = obj._id;
    db.dashboard_account_num.insert({accountId:accountId,sum:sum,reblogNum:reblogNum,postNum:postNum,photoNum:photoNum,
        videoShortNum:videoShortNum,videoNum:videoNum,musicNum:musicNum,questionNum:questionNum,
        appNum:appNum,dialogNum:dialogNum});
}

print('success insert total ' + results.count()+ ' datas');
db.aAccounttemp.drop()
quit()  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值