图解排序算法(04) -- 堆排序

本文深入解析了堆排序算法,包括其核心概念、实现代码及性能分析。通过构建二叉堆,利用堆的特性进行高效排序,详细阐述了堆排序的步骤与优化。对比快速排序,突出了堆排序的稳定性与空间效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、初识堆排序

二叉堆的特性:

  • 最大堆的堆顶是整个堆中的最大元素
  • 最小堆的堆顶是整个堆中的最小元素

以最大堆为例,如果删除一个最大堆的堆顶(并不是完全删除,而是跟末尾的点交换位置),经过自我调整,第2大的元素就会被交换上来,成为最大堆的新堆顶,如下图:
在这里插入图片描述
如上图所示,在删除值为10的堆顶节点后,经过调整,值为9的新节点就会顶替上来;在删除值为9的堆顶节点后,经过调整,值为8的新节点就会顶替上来……
由于二叉堆的这个特性,每一次删除旧堆顶,调整后的新堆顶都是大小仅次于旧堆顶的节点。那么只要反复删除堆顶,反复调整二叉堆,所得到的集合就会成为 一个有序集合,过程如下:

  • 删除节点9,节点8成为新堆顶
    在这里插入图片描述
  • 删除节点8,节点7成为新堆顶
    在这里插入图片描述
  • 删除节点7,节点6成为新堆顶
    在这里插入图片描述
  • 删除节点6,节点5成为新堆顶
    在这里插入图片描述
  • 删除节点5,节点4成为新堆顶
    在这里插入图片描述
  • 删除节点4,节点3成为新堆顶
    在这里插入图片描述
  • 删除节点3,节点2成为新堆顶
    在这里插入图片描述
    经过上述步骤,原本的最大二叉堆已经变成了一个从小到大的有序集合
    二叉堆实际存储在数组中,数组中的元素排列如下:
    在这里插入图片描述
    由此,归纳出堆排序算法的步骤:
  1. 把无序数组构建成二叉堆。需要从小到大排序,则构建成最大堆;需要从大到小排序,则构建成最小堆。
  2. 循环删除堆顶元素,替换到二叉堆的末尾,调整堆产生新的堆顶。

2、堆排序代码实现

Code:

import java.util.Arrays;

public class TreeNode5 {
    /**
     * “下沉”调整
     * @param array  待调整的堆
     * @param parentIndex      要“下沉”的父节点
     *  @param length       堆的有效大小
     */
    public static void downAdjust(int[] array, int parentIndex, int length) {
        // temp 保存父节点值,用于最后的赋值
        int temp = array[parentIndex];
        int childIndex = 2 * parentIndex + 1;
        while (childIndex < length) {
            // 如果有右孩子,且右孩子大于左孩子的值,则定位到右孩子
            if (childIndex + 1 < length && array[childIndex + 1] > array[childIndex]) {
                childIndex++;
            }
            // 如果父节点大于任何一个孩子的值,则直接跳出
            if (temp >= array[childIndex])
                break;
                //无须真正交换,单向赋值即可
                array[parentIndex] = array[childIndex];
                parentIndex = childIndex;
                childIndex = 2 * childIndex + 1;
            }
        array[parentIndex] = temp;
    }

    /**
     * 堆排序(升序)
     * @param array  待调整的堆
     */
    public static void heapSort(int[] array){
        //1、把无序数组构建成最大堆
        for(int i = (array.length-2)/2;i >= 0;i--){
            downAdjust(array,i,array.length);
        }
        System.out.println("无序数组构建成的最大堆:" + Arrays.toString(array));
        //2、循环删除堆顶元素,移到集合尾部,调整堆产生新的堆顶
        for(int i = array.length - 1;i > 0;i--){
            //最后1个元素和第一个元素进行交换
            int temp = array[i];
            array[i] = array[0];
            array[0] = temp;
            //“下沉”调整最大堆
            downAdjust(array,0,i);
        }
    }
    
    public static void main(String[] args) {
       int[] array = new int[] {1,3,2,6,5,7,8,9,10,0};
       System.out.println("排序前:"+ Arrays.toString(array));
       heapSort(array);
       System.out.println("排序后:"+ Arrays.toString(array));
       }
}

编译输出:
在这里插入图片描述

3、堆排序总结

排序算法的步骤:

  • 把无序数组构建成二叉堆;
  • 循环删除堆顶元素,并将该元素移到集合尾部,调整堆产生新的堆顶:
    首先把无序数组构建成二叉堆,这一步的时间复杂度是O(n);
    然后进行n-1次循环;每次循环调用一次downAdjust方法,计算规模是 (n-1)×logn ,时间复杂度为O(nlogn)。
    两个步骤是并列关系,所以整体的时间复杂度是O(nlogn)

堆排序和快速排序的区别和联系:
相同点:堆排序和快速排序的平均时间复杂度都是O(nlogn),并且都是不稳定排序;
不同点:

  • 快速排序的最坏时间复杂度是O(n²),而堆排序的最坏时间复杂度稳定在O(nlogn);
  • 快速排序递归和非递归方法的平均空间复杂度都是O(logn),而堆排序的空间复杂度是O(1)。

———————————————————————————————————————
内容来源:《漫画算法》
关注公众号,回复 【算法】,获取高清算法书!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值