力扣—980不同路径III回溯解法

题目描述

在二维网格 grid 上,有 4 种类型的方格:


    1 表示起始方格。且只有一个起始方格。
    2 表示结束方格,且只有一个结束方格。
    0 表示我们可以走过的空方格。
    -1 表示我们无法跨越的障碍。


返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目。

每一个无障碍方格都要通过一次,但是一条路径中不能重复通过同一个方格。

示例 1:

输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
输出:2
解释:我们有以下两条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

示例 2:

输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]]
输出:4
解释:我们有以下四条路径: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

解题思路

这道题与上一题不同之处在于,这道题起始点和终止点的位置不确定,而且这道题明确要求所有空位点必须经过一次,且最终点落脚到终止点。

题目判断是否所有点均走过可以使用一个变量来记录,事先保存好所有可以走的点的总数(包括起始点,终止点可空位点),然后使用回溯方法,当到达终点时,判断走过的点总是是否等于预先保存的那个数,如果是,则满足条件

class Solution(object):
    def uniquePathsIII(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        cnt = 0   #无障碍方格总数
        start_x = start_y = 0
        self.end_x = self.end_y = 0
        m, n = len(grid), len(grid[0])
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 1:
                    start_x = i
                    start_y = j
                    cnt += 1
                elif grid[i][j] == 2:
                    self.end_x = i
                    self.end_y = j
                    cnt += 1
                elif grid[i][j] == 0:
                    cnt += 1
        self.res = 0
        grid[start_x][start_y] = -1
        self.dfs(grid, m, n, start_x, start_y, cnt, 0)
        return self.res

    def dfs(self, grid, m, n, x, y, cnt, step):
        if x == self.end_x and y == self.end_y:
            if step == cnt - 1:
                self.res += 1
            return
        for nx, ny in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]:
            if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] != -1:
                temp = grid[nx][ny]
                grid[nx][ny] = -1
                self.dfs(grid, m, n, nx, ny, cnt, step + 1)
                grid[nx][ny] = temp

S = Solution()
print(S.uniquePathsIII([[1,0,0,0],[0,0,0,0],[0,0,2,-1]]))

这里首先先保存起始点和终止点的下标,并且记录所有可以走的点的总数(这里0,1, 2均可),没每走过一个点,就将该点置为-1,方便后续操作,同一层dfs执行完后需要将这个点再变回来(这点很重要,对应于grid[nx][ny] = temp这是回溯的基本框架)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值