ROC和AUC介绍及计算

本文介绍了ROC曲线和AUC的概念,以及它们在度量分类模型性能中的作用。ROC曲线通过false positive rate(FPR)和true positive rate(TPR)展示模型效果,AUC则是ROC曲线下的面积,用于量化模型好坏。文章还阐述了如何计算FPR、TPR以及AUC,并提供了Python代码示例。
摘要由CSDN通过智能技术生成

        AUC是一种用来度量分类模型好坏的一个标准。它跟ROC有着密切的关系,所以先介绍ROC,再来分析AUC以及它的计算。

  • ROC曲线

      ROC曲线能够反映分类的能力,它的横坐标是falsepositive rate(FPR),纵坐标是truepositive rate(TPR)。(晕定义的可以跳到下一段)对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPRFPR点对。这样,此分类器就可以映射成ROC平面上的一个点。调整这个分类器分类时候使用的阈值,我们就可以得到一个经过(0,0)(1, 1)的曲线,这就是此分类器的ROC曲线。一般情况下,这个曲线都应该处于(0,0)(1, 1)连线的上方。因为(0, 0)(1, 1)连线形成的ROC曲线实际上代表的是一个随机分类器。如果很不幸,你得到一个位于此直线下方的分类器的话,一个直观的补救办法就是把所有的预测结果反向,即:分类器输出结果为正类,则最终分类的结果为负类,反之,则为正类。总之,我们需要计算FPR和TPR,那这两个参数的具体计算方法是什么呢?

    针对一个二分类问题,将实例分成正类(postive)或者负类(negative)。但是实际中分类时,会出现四种情况.

(1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP)

(2)若一个实例是正类,但是被预测成为负类(漏报),即为假负类(False Negative FN)

(3)若一个实例是负类,但是被预测成为正类(误报),即为假正类(False Postive FP)

(4)若一个实例是负类,但是被预测成为负类,即为真负类(True Negative TN)

列联表如下,1代表正类,0代表负类:

 

预测

  合计

1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值