背包问题

背包问题

题目描述
有 n 个物品和一个大小为 m 的背包. 给定数组 A 表示每个物品的大小和数组 V 表示每个物品的价值.
问最多能装入背包的总价值是多大?
背包问题

  • 状态:
    F(i, j): 前i个物品放入大小为j的背包中所获得的最大价值
  • 状态递推:对于第i个商品,有一种例外,装不下,两种选择,放或者不放
    如果装不下:此时的价值与前i-1个的价值是一样的
    F(i,j) = F(i-1,j)
    如果可以装入:需要在两种选择中找最大的
    F(i, j) = max{F(i-1,j), F(i-1, j - A[i]) + V[i]}
    F(i-1,j): 表示不把第i个物品放入背包中, 所以它的价值就是前i-1个物品放入大小为j的背包的最大价值
    F(i-1, j - A[i]) + V[i]:表示把第i个物品放入背包中,价值增加V[i],但是需要腾出j - A[i]的大小放第i个商品
  • 初始化:第0行和第0列都为0,表示没有装物品时的价值都为0
    F(0,j) = F(i,0) = 0
  • 返回值:F(n,m)
    在这里插入图片描述
    代码:
public class Solution {
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @param V: Given n items with value V[i]
     * @return: The maximum value
     */
     
/**
 *  状态:
 *      F(i, j): 前i个物品放入大小为j的背包中所获得的最大价值
 *  状态递推:
 *      对于第i个商品,有一种例外,装不下,两种选择,放或者不放
 *      如果装不下:此时的价值与前i-1个的价值是一样的
 *      F(i,j) = F(i-1,j)
 *      如果可以装入:需要在两种选择中找最大的
 *      F(i, j) = max{F(i-1,j), F(i-1, j - A[i]) + V[i]}
 *      F(i-1,j): 表示不把第i个物品放入背包中, 所以它的价值就是前i-1个物品放入大小为j的背包的最大价值
 *      F(i-1, j - A[i]) + V[i]:表示把第i个物品放入背包中,价值增加V[i],但是需要腾出j - A[i]的大小放第i个商品
 *      只要能装下,这时候背包里面的容量够不够都不影响,
 *      容量够的话就是 F(i - 1, j) + V[i]; 不用腾出空间,直接放
 *      容量不够就是F(i - 1, j - A[i]) + V[i]; 需要腾出空间
 *      但是F(i - 1, j - A[i]) + V[i]可以包含第一种情况,所以就把递推式合在一起了。
 *  初始化:
 *      第0行和第0列都为0,表示没有装物品时的价值都为0
 *      F(0,j) = F(i,0) = 0
 *  返回值:
 *      F(n,m)
 */
     
     
    public int backPackII(int m, int[] A, int[] V) {
        // write your code here
        int num = A.length;
        if(m == 0 || num == 0)
            return 0;
        //多加一行一列,用于设置初始条件
        int[][] maxValue = new int[num + 1][m + 1];
        //初始化所有位置为0,第一行和第一列都为0,初始条件
        for (int i = 0; i <= num; i++) {
            maxValue[i][0] = 0;
        }
        for (int i = 1; i <= m; i++) {
            maxValue[0][i] = 0;
        }

        for (int i = 1; i <= num; i++) {
            for (int j = 1; j <= m; j++) {
                //第i个商品在A中对应的索引为i-1: i从1开始
                if (A[i - 1] <= j) {
                    //如果可以装下,分两种情况,装或者不装
                    //如果不装,则即为(i-1, j)
                    //如果装,需要腾出放第i个物品大小的空间: j - A[i-1],装入之后的最大价值即为(i -1, j - A[i-1]) + 第i个商品的价值V[i - 1]
                    //最后在装与不装中选出最大的价值
                    maxValue[i][j] = Math.max(maxValue[i - 1][j], maxValue[i - 1][j - A[i - 1]] + V[i - 1]);
                } else {
                    //如果第i个商品大于j,说明放不下, 所以(i,j)的最大价值和(i-1,j)相同
                    maxValue[i][j] = maxValue[i - 1][j];
                }
            }
        }
        //返回装入前N个商品,物品大小为m的最大价值
        return maxValue[num][m];
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值