Java实现二叉树


二叉树(Binary Tree):二叉树是一棵树,其中每个结点都不能有多于两个的子结点;


特点:

     (1) 每个结点最多有两棵子树,没有子树或者只有一棵子树也是可以的;

      (2)左子树和右子树是有顺序的,次序不能任意颠倒;

      (3)即使树中只有一棵子树,也要区分它是左子树还是右子树;


特殊的二叉树:

      (1)斜树:顾名思义,斜树一定是要斜的;所有的结点都只有左子树的二叉树叫左斜树,所有的结点都只有右子树的二叉树叫右斜树;其实,线性表就可以理解为树的一种特殊的表现形式;

       (2)满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树;如图:

         (3)完全二叉树:对一棵具有n个结点的二叉树按层序编号,如果编号为i的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,那么这棵二叉树称为完全二叉树;或者这样理解:在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是右边缺少连续若干个结点,则称此树为完全二叉树;

所以我们可以这样判断完全二叉树:那就是看着树的示意图,心中默默给每个结点按照满二叉树的结构逐层顺序编号,如果编号出现空档,就说明不是完全二叉树,否则就是;


二叉树的实现:同样,二叉树也可以通过顺序存储和链式存储来实现;

          二叉树的顺序存储就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如父结点与子结点的逻辑关系,子结点 与子结点之间的关系;但顺序存储的实用性不强;

          所以一般采用链式存储;


二叉树的遍历:是指从根结点出发,按照某种次序,依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次;

 二叉树的遍历方式有好多种,如果我们限制了从左到右的习惯方式,那么主要就有以下几种:

         (1)前序遍历:先访问子结点,然后前序遍历左子树,再前序遍历右子树;如下图,遍历顺序是:ABDGHCEIF


         (2)中序遍历:从根结点开始(但并不是先访问根结点),中序遍历根结点的左子树,然后方式根结点,最后中序遍历右树,如图,遍历的顺序是:GDHBAEICF

           (3)后序遍历:从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点;如图,遍历的顺序是:GHDBIEFCA

          (4)层序遍历:从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点进行逐个访问;如图,遍历顺序为:ABCDEFGHI


代码如下:

二叉树结点

package binaryTree;

// 二叉树节点 
public class BTNode
{
	private char key;                  // 数据
	private BTNode left, right;    // 左右子结点

	public BTNode(char key)
	{
		this(key, null, null);
	}

	public BTNode(char key, BTNode left, BTNode right)
	{
		this.key = key;
		this.left = left;
		this.right = right;
	}

	public char getKey()
	{
		return key;
	}

	public void setKey(char key)
	{
		this.key = key;
	}

	public BTNode getLeft()
	{
		return left;
	}

	public void setLeft(BTNode left)
	{
		this.left = left;
	}

	public BTNode getRight()
	{
		return right;
	}

	public void setRight(BTNode right)
	{
		this.right = right;
	}

}

二叉树遍历:

package binaryTree;

import java.util.Stack;

// 遍历二叉树 
public class BinTree
{
	protected BTNode root;

	public BinTree(BTNode root)
	{
		this.root = root;
	}

	public BTNode getRoot()
	{
		return root;
	}

	// 初始化,构造二叉树
	public static BTNode init()
	{
		BTNode a = new BTNode('A');
		BTNode b = new BTNode('B', null, a);
		BTNode c = new BTNode('C');
		BTNode d = new BTNode('D', b, c);
		BTNode e = new BTNode('E');
		BTNode f = new BTNode('F', e, null);
		BTNode g = new BTNode('G', null, f);
		BTNode h = new BTNode('H', d, g);
		return h;         // 根结点
	}

	// 访问节点
	public static void visit(BTNode p)
	{
		System.out.print(p.getKey() + " ");
	}

	// 递归实现前序遍历
	protected static void preorder(BTNode p)
	{
		if (p != null)
		{
			visit(p);
			preorder(p.getLeft());
			preorder(p.getRight());
		}
	}

	// 递归实现中序遍历
	protected static void inorder(BTNode p)
	{
		if (p != null)
		{
			inorder(p.getLeft());
			visit(p);
			inorder(p.getRight());
		}
	}

	// 递归实现后序遍历
	protected static void postorder(BTNode p)
	{
		if (p != null)
		{
			postorder(p.getLeft());
			postorder(p.getRight());
			visit(p);
		}
	}

	// 非递归实现前序遍历
	protected static void iterativePreorder(BTNode p)
	{
		Stack<BTNode> stack = new Stack<BTNode>();
		if (p != null)
		{
			stack.push(p);
			while (!stack.empty())
			{
				p = stack.pop();
				visit(p);
				if (p.getRight() != null)
					stack.push(p.getRight());
				if (p.getLeft() != null)
					stack.push(p.getLeft());
			}
		}
	}

	// 非递归实现后序遍历
	protected static void iterativePostorder(BTNode p)
	{
		BTNode q = p;
		Stack<BTNode> stack = new Stack<BTNode>();
		while (p != null)
		{
			// 左子树入栈
			for (; p.getLeft() != null; p = p.getLeft())
				stack.push(p);
			// 当前结点无右子结点或右子结点已经输出
			while (p != null && (p.getRight() == null || p.getRight() == q))
			{
				visit(p);
				q = p;        // 记录上一个已输出结点
				if (stack.empty())
					return;
				p = stack.pop();
			}
			// 处理右子结点
			stack.push(p);
			p = p.getRight();
		}
	}

	// 非递归实现中序遍历
	protected static void iterativeInorder(BTNode p)
	{
		Stack<BTNode> stack = new Stack<BTNode>();
		while (p != null)
		{
			while (p != null)
			{
				if (p.getRight() != null)
					stack.push(p.getRight());   // 当前结点右子结点入栈
				stack.push(p);                  // 当前结点入栈
				p = p.getLeft();
			}
			p = stack.pop();
			while (!stack.empty() && p.getRight() == null)
			{
				visit(p);
				p = stack.pop();
			}
			visit(p);
			if (!stack.empty())
				p = stack.pop();
			else
				p = null;
		}
	}

	public static void main(String[] args)
	{
		BinTree tree = new BinTree(init());

		System.out.print(" 递归实现前序遍历:");
		preorder(tree.getRoot());
		System.out.println("\n");

		System.out.print(" 递归实现中序遍历:");
		inorder(tree.getRoot());
		System.out.println("\n");

		System.out.print(" 递归实现后序遍历:");
		postorder(tree.getRoot());
		System.out.println("\n");

		System.out.print(" 非递归实现前序遍历:");
		iterativePreorder(tree.getRoot());
		System.out.println("\n");

		System.out.print(" 非递归实现中序遍历:");
		iterativeInorder(tree.getRoot());
		System.out.println("\n");

		System.out.print(" 非递归实现后序遍历:");
		iterativePostorder(tree.getRoot());
		System.out.println("\n");

	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值