- 博客(44)
- 收藏
- 关注
原创 【图像处理实战】去除光照不均(Python)
最后一张是我自己的测试图,对于某些图来说效果比较好,可以用在文档阴影去除上。图也是用的参考文章里面的原图进行处理的。
2024-06-25 17:14:51 914
原创 最容易理解的优化器的公式表示(BGD,SGD,SGDM,Adagrad,RMSProp,Adam)
BGD,MBDG,SGD,SGDM,Adagrad,RMSProp,Adam的公式表达
2024-05-10 16:21:04 642
原创 【目标检测】YOLOv7 网络结构(与 YOLOv4,YOLOv5 对比)
YOLOv7 的 backbone 与 YOLOV5 对比,YOLOv7 的 neck 和 head 与 YOLOv4 对比
2024-04-23 15:20:27 1580
原创 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
ELAN,E-ELAN,VovNet,CspVovNet,DenseNet
2024-04-23 11:09:57 4553
原创 【目标检测】YOLOv6 的网络结构,图解RepBlock重参数化
YOLOv6 是美团推出的,在这个版本里面,不再使用之前 YOLOv4 和 YOLOv5 的带 CSP 结构的 CSPDarknet-53 作为 backbone 了,而是在 RepVGG 的启发下,推出了新的 EfficientRep 作为 YOLOv6 的 backbone。简单来说,在训练和推理的时候采用不同的结构,在训练的时候采用多分支结构进行训练,但是在推理的时候使用单分支,即保留了训练多分支的准确度,又兼具推理时单分支的速度。
2024-04-01 13:39:54 2642
原创 【目标检测】YOLOv5 网络结构,bottleneckCSP 与 C3 模块图解
YOLOv5 作为 YOLO 家族的第五个版本,本身也演进了几个子版本,现在网上的资料都没有标注具体是哪个子版本的,导致不同文章之间各种混乱,像是盲人摸象。其实官方的里对各个版本的变动其实都讲得非常清楚了。下面简单说一下各版本用到的模块:V1.0版本V2.0版本在V1.0版本基础上删去nn.Conv2d,并且Detect指定为17, 20, 23层输出。V4.0版本用C3代替了BottleneckCSP,而其他的结构不变。CBL 也换成了 CBS,使用 SiLU 作为激活函数。
2024-03-29 09:09:03 7774 5
原创 图解 python 的赋值,浅拷贝,深拷贝
但是因为对象是列表,内部还有子对象,在浅拷贝的时候,会对他们的引用进行复制,所以子对象的引用是没有变的,但是你修改不可变元素的时候,实际上不是在修改它的值,而是将它的引用去掉,然后用新的引用指向新的值。所以 a[0] 修改之后,c[0] 还会是原来的值。,实际上两者的引用是一样的,相当于 b 只是 a 的另外一个名字,不管是对 a 或者 b 内的可变元素还是不可变元素修改,打印 a, b 两者都是一样的。但是如果是深拷贝的,相当于递归进行分身,不管是顶层对象,还是子对象,都会递归进行拷贝,也就是所谓的“
2024-03-27 17:34:17 313
原创 【目标检测】图解 YOLOv3 的网络结构(Darknet-53 作为 backbone)
Darknet-53 作为 backbone 的 YOLOv3 网络结构图解
2024-03-19 15:56:16 1435
原创 【目标检测】原始的 YOLOv1 网络结构(GoogLeNet 作为 backbone 的实现)
yolov1 使用 GoogLeNet 作为 backbone 的网络结构实现全解析。
2024-03-16 17:24:30 1015
原创 【阅读笔记】通俗易懂的 transformer 笔记
这篇文章是关于《如何从浅入深理解transformer》 的一个阅读笔记。因为是第一次接触 transformer,找了半天,感觉这篇文章作为入门来说还不错,可以将整个发展的历程串联起来讲。但是这毕竟是一篇阅读笔记,我只会对个人不太清楚的概念详细了解。
2024-03-06 14:23:09 740
原创 文章中出现的问题汇总
我将文章评论区中的比较有价值的评论提问在这里汇总,供大家一起学习参考,如果大家对下面的问题有解答的话,也可以在评论区帮忙解答。
2024-02-06 16:11:28 332
原创 聚焦清晰度评价指标所用到的各种算法
本文涉及到各种聚焦清晰度评价算法,包含Variance,brenner, tenengrad, eog,robert,laplace,一阶高斯导,image power,vollath,entropy,log histogram,还有一些国人提出的 SMD,SMD2,PAV点锐度,NRSS无参结构相似度量。后续会加上代码实现
2023-11-29 10:41:32 2054
原创 【深度学习基础】归一化,白化,
当然,除了对图像的像素值进行归一化,在目标检测的 YOLO 家族中,我们也会对目标框的坐标和宽高进行归一化处理。归一化后数值落在哪个区间对后续的训练有什么影响呢?但是上面有几个答案都提到了归一化到。是一种更为推荐的归一化方式。
2023-10-30 17:26:04 207
原创 【mediapipe嵌入式实战02】使用libmediapipe编译静态库,并解读实例代码
读完这个 example.cpp 文件之后,稍微改动一下,我就顺利的跑出了自己的 face landmarks,但是有一个问题就是有几个 detection 相关的 graph,最后输出的数据格式是 mediapipe::Detection 格式的,libmediapipe 好像没有做这个转 rect 之类的接口,所以没办法直接使用。可能得自己在头文件上补上,然后重新编译才行。不过我也只需要 face landmarks 的,所以也就不管了。
2023-09-27 11:27:59 1133 9
原创 【mediapipe嵌入式实战01】Linux环境的mediapipe编译(快跑)
最近想要将 mediapipe 中 facemesh 这个功能移植到硬件上,所以第一步是要编译一下 mediapipe,因为 mediapipe 是谷歌出的,自然也是要用 google 的 bazel 编译器进行编译。只是第一次接触,踩的坑有点多,花了将近 3 天的时间才成功地编译。首先说一下我的系统的是 centos 8,gcc 版本是 8.5,opencv 的版本是 4.1.2。
2023-09-22 11:34:10 1859
原创 【算法手撕代码】手撕 IOU 与 NMS(Pytorch实现)
最后返回的 keep 理论上最大可能保留了所有的候选框,就是如果你的 threshold 设置得很大的时候,例如 0.99 之类的。最少应该也能保留一个 score 值最大的候选框吧。
2023-09-04 13:33:38 788
原创 浅入浅出讲解 Inception 家族的网络(万字长文)
在 Inception 之前,人们的路径依赖就是,通过更深的卷积层级来获得更高的准确率和性能,但是这种无脑加深网络的方式导致参数量变大,随之而来 2 个显而易见的问题,第一是容易过拟合,第二是需要更多的计算资源。与 Inception V1(GoogLeNet) 同年推出的 VggNet 是当时的集大成者,它可以提供很深的层级和很好的泛化能力,而且在多项任务中都获得了很好的效果。
2023-08-08 14:22:38 2480 1
原创 《CUDA C++ Programming Guide》阅读笔记(每页要点总结)
零基础,之前跑过一点 python ,几乎没有搞过 C++。这次会利用 chatGPT 辅助阅读这本官方手册。学习 CUDA 编程。最终要达到啥效果呢,希望可以读懂 cudasift 的源码。
2023-07-06 11:28:04 509
原创 特征检测 + 匹配
orb, surf, sift, superpoint, superglue, fast, brief, bfmatch, flann
2023-04-26 16:04:24 171
原创 Linux安装cuda,cudnn,tensorRT完整流程
cuda,cudnn,tensorRT安装,tensorrt和cuda的python API接口库安装
2022-10-19 10:36:33 8554 9
原创 pytorch
也就是说,reshape操作也不一定会开辟新的内存空间,如果tensor是连续的话,实际上调用的view的实现,而当tensor不连续且步长不兼容的时候,就会对tensor进行深拷贝。相当于tensor的一个引用,通过它会直接对原tensor进行操作,不会产生拷贝,只能对满足张量连续性条件(contiguous)的tensor进行操作。:通过加载了权重的模型实例来进行调用,可以查看模型的全部参数。对tensor的维度进行交换之后,才会不满足条件,这时候就需要使用。可以对任意tensor进行操作,相当于。
2022-10-10 17:44:33 678
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人