- 博客(49)
- 收藏
- 关注
原创 【Electron】Windows 下打包遇到 dist/unpacked 文件内 electron.exe 文件缺失问题
摘要:使用electron-vite和electron-builder打包时遇到ENOENT错误,提示无法重命名electron.exe文件。原因是electron.exe未生成导致重命名失败。解决方法为:删除electron缓存目录(C:\Users\xxx\AppData\Local\electron\Cache)、node_modules、dist文件夹及package-lock.json文件,然后重新执行npm install和npm run build:win命令。该问题可能是由于electron
2026-01-19 11:13:22
73
原创 Linux 系统 docker 部署 Dify
本文提供了Dify平台的本地部署指南。首先通过git克隆项目仓库,进入docker目录后复制环境配置文件。为避免端口冲突,需修改.env文件中的nginx端口设置(建议改为8099和4433)。使用docker-compose启动服务时,可能因网络问题导致依赖下载失败,可参考Milvus安装教程配置docker镜像源。最后通过docker-compose ps检查服务状态,在浏览器访问localhost:8099即可完成部署。整个流程简明扼要,适合快速搭建本地开发环境。
2025-07-09 17:08:49
428
原创 Linux 系统 docker 安装 milvus standalone 版本 + attu
摘要:本文介绍了Milvus向量数据库的两种部署方式:轻量版直接通过Python安装pymilvus使用,单机版则需要Docker部署。重点讲解了Docker环境的配置,包括国内镜像源设置、docker-compose.yml文件获取与修改(添加attu可视化工具)。最后通过docker-compose命令启动服务,并通过8000端口访问attu进行数据库管理。整个过程涵盖了从环境准备到服务部署的完整流程。
2025-06-10 17:49:06
1474
原创 【图像处理】OpenCv + Python 实现 Photoshop 中的色彩平衡功能
Photoshop 色彩平衡算法,python opencv 实现
2025-01-03 17:49:55
855
原创 【图像处理实战】去除光照不均(Python)
最后一张是我自己的测试图,对于某些图来说效果比较好,可以用在文档阴影去除上。图也是用的参考文章里面的原图进行处理的。
2024-06-25 17:14:51
1793
原创 最容易理解的优化器的公式表示(BGD,SGD,SGDM,Adagrad,RMSProp,Adam)
BGD,MBDG,SGD,SGDM,Adagrad,RMSProp,Adam的公式表达
2024-05-10 16:21:04
1027
原创 【目标检测】YOLOv7 网络结构(与 YOLOv4,YOLOv5 对比)
YOLOv7 的 backbone 与 YOLOV5 对比,YOLOv7 的 neck 和 head 与 YOLOv4 对比
2024-04-23 15:20:27
2256
原创 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
ELAN,E-ELAN,VovNet,CspVovNet,DenseNet
2024-04-23 11:09:57
8831
原创 【目标检测】YOLOv6 的网络结构,图解RepBlock重参数化
YOLOv6 是美团推出的,在这个版本里面,不再使用之前 YOLOv4 和 YOLOv5 的带 CSP 结构的 CSPDarknet-53 作为 backbone 了,而是在 RepVGG 的启发下,推出了新的 EfficientRep 作为 YOLOv6 的 backbone。简单来说,在训练和推理的时候采用不同的结构,在训练的时候采用多分支结构进行训练,但是在推理的时候使用单分支,即保留了训练多分支的准确度,又兼具推理时单分支的速度。
2024-04-01 13:39:54
4937
原创 【目标检测】YOLOv5 网络结构,bottleneckCSP 与 C3 模块图解
YOLOv5 作为 YOLO 家族的第五个版本,本身也演进了几个子版本,现在网上的资料都没有标注具体是哪个子版本的,导致不同文章之间各种混乱,像是盲人摸象。其实官方的里对各个版本的变动其实都讲得非常清楚了。下面简单说一下各版本用到的模块:V1.0版本V2.0版本在V1.0版本基础上删去nn.Conv2d,并且Detect指定为17, 20, 23层输出。V4.0版本用C3代替了BottleneckCSP,而其他的结构不变。CBL 也换成了 CBS,使用 SiLU 作为激活函数。
2024-03-29 09:09:03
13130
5
原创 图解 python 的赋值,浅拷贝,深拷贝
但是因为对象是列表,内部还有子对象,在浅拷贝的时候,会对他们的引用进行复制,所以子对象的引用是没有变的,但是你修改不可变元素的时候,实际上不是在修改它的值,而是将它的引用去掉,然后用新的引用指向新的值。所以 a[0] 修改之后,c[0] 还会是原来的值。,实际上两者的引用是一样的,相当于 b 只是 a 的另外一个名字,不管是对 a 或者 b 内的可变元素还是不可变元素修改,打印 a, b 两者都是一样的。但是如果是深拷贝的,相当于递归进行分身,不管是顶层对象,还是子对象,都会递归进行拷贝,也就是所谓的“
2024-03-27 17:34:17
408
原创 【目标检测】图解 YOLOv3 的网络结构(Darknet-53 作为 backbone)
Darknet-53 作为 backbone 的 YOLOv3 网络结构图解
2024-03-19 15:56:16
1859
原创 【目标检测】原始的 YOLOv1 网络结构(GoogLeNet 作为 backbone 的实现)
yolov1 使用 GoogLeNet 作为 backbone 的网络结构实现全解析。
2024-03-16 17:24:30
1498
原创 【阅读笔记】通俗易懂的 transformer 笔记
这篇文章是关于《如何从浅入深理解transformer》 的一个阅读笔记。因为是第一次接触 transformer,找了半天,感觉这篇文章作为入门来说还不错,可以将整个发展的历程串联起来讲。但是这毕竟是一篇阅读笔记,我只会对个人不太清楚的概念详细了解。
2024-03-06 14:23:09
1162
原创 文章中出现的问题汇总
我将文章评论区中的比较有价值的评论提问在这里汇总,供大家一起学习参考,如果大家对下面的问题有解答的话,也可以在评论区帮忙解答。
2024-02-06 16:11:28
413
原创 聚焦清晰度评价指标所用到的各种算法
本文涉及到各种聚焦清晰度评价算法,包含Variance,brenner, tenengrad, eog,robert,laplace,一阶高斯导,image power,vollath,entropy,log histogram,还有一些国人提出的 SMD,SMD2,PAV点锐度,NRSS无参结构相似度量。后续会加上代码实现
2023-11-29 10:41:32
3235
原创 【深度学习基础】归一化,白化,
当然,除了对图像的像素值进行归一化,在目标检测的 YOLO 家族中,我们也会对目标框的坐标和宽高进行归一化处理。归一化后数值落在哪个区间对后续的训练有什么影响呢?但是上面有几个答案都提到了归一化到。是一种更为推荐的归一化方式。
2023-10-30 17:26:04
468
原创 【mediapipe嵌入式实战02】使用libmediapipe编译静态库,并解读实例代码
读完这个 example.cpp 文件之后,稍微改动一下,我就顺利的跑出了自己的 face landmarks,但是有一个问题就是有几个 detection 相关的 graph,最后输出的数据格式是 mediapipe::Detection 格式的,libmediapipe 好像没有做这个转 rect 之类的接口,所以没办法直接使用。可能得自己在头文件上补上,然后重新编译才行。不过我也只需要 face landmarks 的,所以也就不管了。
2023-09-27 11:27:59
2002
9
原创 【mediapipe嵌入式实战01】Linux环境的mediapipe编译(快跑)
最近想要将 mediapipe 中 facemesh 这个功能移植到硬件上,所以第一步是要编译一下 mediapipe,因为 mediapipe 是谷歌出的,自然也是要用 google 的 bazel 编译器进行编译。只是第一次接触,踩的坑有点多,花了将近 3 天的时间才成功地编译。首先说一下我的系统的是 centos 8,gcc 版本是 8.5,opencv 的版本是 4.1.2。
2023-09-22 11:34:10
2993
原创 【算法手撕代码】手撕 IOU 与 NMS(Pytorch实现)
最后返回的 keep 理论上最大可能保留了所有的候选框,就是如果你的 threshold 设置得很大的时候,例如 0.99 之类的。最少应该也能保留一个 score 值最大的候选框吧。
2023-09-04 13:33:38
1388
原创 浅入浅出讲解 Inception 家族的网络(万字长文)
在 Inception 之前,人们的路径依赖就是,通过更深的卷积层级来获得更高的准确率和性能,但是这种无脑加深网络的方式导致参数量变大,随之而来 2 个显而易见的问题,第一是容易过拟合,第二是需要更多的计算资源。与 Inception V1(GoogLeNet) 同年推出的 VggNet 是当时的集大成者,它可以提供很深的层级和很好的泛化能力,而且在多项任务中都获得了很好的效果。
2023-08-08 14:22:38
3754
2
原创 《CUDA C++ Programming Guide》阅读笔记(每页要点总结)
零基础,之前跑过一点 python ,几乎没有搞过 C++。这次会利用 chatGPT 辅助阅读这本官方手册。学习 CUDA 编程。最终要达到啥效果呢,希望可以读懂 cudasift 的源码。
2023-07-06 11:28:04
996
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅