ncnn笔记:03)在Andriod上从零开始搭建人脸检测模型retinaface

前言

预备内容:
ncnn笔记:01)windows+AndriodStudio在安卓机上快速构建一个深度学习分类模型
ncnn笔记:02)ncnn之JNI入门初窥

准备预训练模型文件

ncnn官方提供的retinaface权重及参数文件为

mnet.25-opt.bin   mnet.25-opt.param

下载地址:https://github.com/nihui/ncnn-assets/tree/master/models,但笔者使用该权重在ubuntu上测试会出现如下错误

javis@javis-HP-280-Pro-G2-MT:~/soft/ncnn/build/examples$ ./retinaface /tmp/p.jpeg 
parse magic failed
network graph not ready
find_blob_index_by_name data failed
find_blob_index_by_name face_rpn_cls_prob_reshape_stride32 failed
find_blob_index_by_name face_rpn_bbox_pred_stride32 failed
find_blob_index_by_name face_rpn_landmark_pred_stride32 failed
浮点数例外 (核心已转储)

解决方法可参考笔者在github上提交的issue

创建nativa c++项目

如下图所示,选择nativa c++,c++ standard选择c++11
图1

准备ncnn库文件

本次仅使用cpu做测试,因此无需vulkan,下载通用包ncnn-android-lib.zip解压到cpp目录下,其实只保留armeabi-v7a即可,其为大部分Android机支持类型,不同机型参考
在这里插入图片描述

准备模型文件

在main文件下新建Assets目录,并把mnet.25-opt.bin mnet.25-opt.param放到此目录下
K

编写jni文件

编写规则可参考项目默认创建的native-lib.cpp,此次需提供2个jni接口

  • Init:用于加载检测模型
  • Detect:用于检测图片中的人脸

在java的目录下新建一个java类,编写接口如下

package com.example.retainfacencnn;

import android.content.res.AssetManager;
import android.graphics.Bitmap;

public class RetinaFace {
   
    static {
   
        System.loadLibrary("retinafacencnn");
    }
    //加载模型接口 AssetManager用于加载assert中的权重文件
    public native boolean Init(AssetManager mgr);
    //模型检测接口 其值=4-box + 5-landmark
    public native float[] Detect(Bitmap bitmap);
}

生成对应的jni文件retinaface_jni.cpp
加载模型接口

extern "C" JNIEXPORT jboolean JNICALL
Java_com_example_retainfacencnn_RetinaFace_Init(JNIEnv *env, jobject thiz, jobject assetManager) {
   
    AAssetManager *mgr = AAssetManager_fromJava(env, assetManager);
    //init param
    int ret = retinaface.load_param(mgr, "mnet.25-opt.param");
    if (ret != 0) {
   
        __android_log_print(ANDROID_LOG_DEBUG, "RetinaFace", "load_param failed");
        return
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值