数据排序

样例输入

file1:

2

32

654

32

15

756

65223

file2:

5956

22

650

92

file3:

26

54

6

样例输出:

1 2

6

3 15

4 22

5 26

6 32

7 32

8 54

9 92

10 650

11 654

12 756

13 5956

14 65223

package mapreduce.test;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Sort {

	//map将输入中的value转化成IntWritable类型,作为输出的key
	public static class Map extends Mapper<Object, Text, IntWritable, IntWritable>{
		private static IntWritable data = new IntWritable();
		
		protected void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			String line = value.toString();
			data.set(Integer.parseInt(line));
			context.write(data, new IntWritable(1));
		}
	}
	//reduce将输入的可以复制到输出的value上,然后根据输入的value-list中元素的个数决定key的输出次数
	//用全局的linenum来代表key的位次
	public static class Reduce extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable>{
		private static IntWritable linenum = new IntWritable(1);

		protected void reduce(IntWritable key, Iterable<IntWritable> values,Context context)
				throws IOException, InterruptedException {
			for(IntWritable val : values){
				context.write(linenum, key);
				linenum = new IntWritable(linenum.get()+1);
			}
		}
	}
	//自定义Partition函数,此函数根据输入数据的最大值和MapReduce框架中
	//Patition的数量获取将输入数据按照大小分块的边界,然后根据输入值和边界的关系返回对应的PartitionID
	public static class Partition extends Partitioner<IntWritable, IntWritable>{

		@Override
		public int getPartition(IntWritable key, IntWritable value,
				int numPartitions) {
			int Maxnumber = 65223;
			int bound = Maxnumber/numPartitions + 1;
			int keynumber = key.get();
			for(int i =0;i<numPartitions;i++){
				if(keynumber<bound*i && keynumber >= bound*(i-1))
					return i-1;
			}
			return -1;
		}
	}
	
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		Job job = new Job(conf,"sort");
		job.setJarByClass(Sort.class);
		job.setMapperClass(Map.class);
		job.setReducerClass(Reduce.class);
		job.setPartitionerClass(Partition.class);
		job.setOutputKeyClass(IntWritable.class);
		job.setOutputValueClass(IntWritable.class);
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
	
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值