如今我们最常见的罗马数字就是钟表的表盘符号:
Ⅰ,Ⅱ,Ⅲ,Ⅳ(IIII),Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,Ⅺ,Ⅻ……
基本字符
|
I
|
V
|
X
|
L
|
C
|
D
|
M
|
相应的阿拉伯数字表示为
|
1
|
5
|
10
|
50
|
100
|
500
|
1000
|
1、相同的数字连写,所表示的数等于这些数字相加得到的数,如:Ⅲ = 3;
2、小的数字在大的数字的右边,所表示的数等于这些数字相加得到的数, 如:Ⅷ = 8;Ⅻ = 12;
3、小的数字,(限于Ⅰ、X 和C)在大的数字的左边,所表示的数等于大数减小数得到的数,如:Ⅳ= 4;Ⅸ= 9;
4、正常使用时,连写的数字重复不得超过三次。(表盘上的四点钟“IIII”例外)
5、在一个数的上面画一条横线,表示这个数扩大1000倍。
有几条须注意掌握:
1、基本数字Ⅰ、X 、C 中的任何一个,自身连用构成数目,或者放在大数的右边连用构成数目,都不能超过三个;放在大数的左边只能用一个。
2、不能把基本数字V 、L 、D 中的任何一个作为小数放在大数的左边采用相减的方法构成数目;放在大数的右边采用相加的方式构成数目,只能使用一个。
3、V 和X 左边的小数字只能用Ⅰ。
4、L 和C 左边的小数字只能用X。
5、D 和M 左边的小数字只能用C。
而这道题好就好在没有让我们来验证输入字符串是不是罗马数字,这样省掉不少功夫。我们需要用到map数据结构,来将罗马数字的字母转化为对应的整数值,因为输入的一定是罗马数字,那么我们只要考虑两种情况即可:
第一,如果当前数字是最后一个数字,或者之后的数字比它小的话,则加上当前数字
第二,其他情况则减去这个数字
以下是写的代码
#include <iostream> #include <unordered_map> using namespace std; class Solution { public: int romanToInt(string s) { int res = 0; unordered_map<char, int> m{{'I', 1}, {'V', 5}, {'X', 10}, {'L', 50}, {'C', 100}, {'D', 500}, {'M', 1000}}; for (int i = 0; i < s.size(); i++) { int val = m[s[i]]; if (i == s.size() - 1 || m[s[i+1]] <= m[s[i]]) res += val; else res -=val; } return res; } }; int main(){ Solution a; string s = "XC"; cout<<a.romanToInt(s)<<endl; return 0; }