BZOJ 1040 ZJOI 2008 骑士 基环树林+树形DP

题目大意:有一些骑士,他们每个人都有一个权值。但是由于一些问题,每一个骑士都特别讨厌另一个骑士。所以不能把他们安排在一起。求这些骑士所组成的编队的最大权值和是多少。


思路:首先貌似是有向图的样子,但是一个人讨厌另一个人,他们两个就不能在一起,所以边可以看成是无向的。

n个点,n条无向边,好像是一颗基环树。但其实这是一个基环树林,因为题中并没有说保证图一定联通。

然后就可以深搜了,处理出每一个联通块。其实每一个联通块就是一个基环树,在这个基环树上进行树形DP。求出最大值,然后累加到答案上。答案要开long long。

树形DP具体的过程是,去掉一条边,使这个基环树变成一颗树,然后进行正常的树形DP。在环上任找一点,和与之相邻的一点,标记他们之间的边,在一会dp的时候不能经过这条边,然后从选择的第一个点dp。f[i]表示取这个点的时候最大的权值和,g[i]表示不取这个点的时候的最大权值和。

进行完dp后,取刚才选取的树的根的g的值g[root]来更新答案。然后再对与它相邻的点进行dp,用g[_root]来更新答案。


CODE:


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 1000010
using namespace std;

int points;
int src[MAX];
int head[MAX],total = 1;
int next[MAX << 1],aim[MAX << 1];

long long f[MAX],g[MAX],ans;
int root,_root;
bool v[MAX],found;
int not_pass;

inline void Add(int x,int y);
void DFS(int x,int last);
void TreeDP(int x,int last);

int main()
{
	cin >> points;
	for(int x,i = 1;i <= points; ++i) {
		scanf("%d%d",&src[i],&x);
		Add(i,x),Add(x,i);
	}
	for(int i = 1;i <= points; ++i)
		if(!v[i]) {
			DFS(i,-1);
			TreeDP(root,-1);
			long long temp = g[root];
			TreeDP(_root,-1);
			temp = max(temp,g[_root]);
			ans += temp;
		}
	cout << ans << endl;
	return 0;
}

inline void Add(int x,int y)
{
	next[++total] = head[x];
	aim[total] = y;
	head[x] = total;
}

void DFS(int x,int last)
{
	v[x] = true;
	for(int i = head[x];i;i = next[i]) {
		if(aim[i] == last)	continue;
		if(!v[aim[i]])	DFS(aim[i],x);
		else {
			not_pass = i;
			root = aim[i];
			_root = x;
		}
	}
}

void TreeDP(int x,int last)
{
	f[x] = src[x],g[x] = 0;
	for(int i = head[x];i;i = next[i]) {
		if(aim[i] == last)	continue;
		if(i == not_pass || i == (not_pass^1))	continue;
		TreeDP(aim[i],x);
		f[x] += g[aim[i]];
		g[x] += max(f[aim[i]],g[aim[i]]);
	}
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值