BZOJ 3437 小P的牧场 斜率优化DP

题目大意:有些按照一字排列的牧场,每一个牧场有一个费用和放牧数量。现在要在一些牧场上建造控制站,目的是控制所有的牧场,建立控制站的基础费用就是每个牧场的费用,然后每一个牧场需要付这个牧场的放养数量*它与右边相邻的控制站的距离。求最小的费用。


思路:直接弄有些不好弄,需要两个前缀和来进行差分。

sum[i] = Σsrc[i]

_sum[i] = Σsrc[i]*i

然后DP方程就是f[i] = f[j] + (sum[i] - sum[j]) * i - _sum[i] + _sum[j]

简单推一推,可以推出:y = f[j] + _sum[j]

k = i,x = sum[j]

之后就是斜率优化了。。


CODE:


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 1000010
using namespace std;
 
struct Point{
    long long x,y;
     
    Point(long long _ = 0,long long __ = 0):x(_),y(__) {}
}q[MAX];
 
int cnt;
long long cost[MAX],src[MAX];
long long sum[MAX],_sum[MAX];
int front,tail;
long long f[MAX];
 
inline double GetSlope(const Point &a,const Point &b)
{
    if(a.x == b.x)  return 1e15;
    return (double)(a.y - b.y) / (a.x - b.x);
}
 
inline void Insert(long long x,long long y)
{
    Point now(x,y);
    while(tail - front >= 2)
        if(GetSlope(q[tail],now) < GetSlope(q[tail - 1],q[tail]))
            --tail;
        else    break;
    q[++tail] = now;
}
 
inline Point GetAns(double slope)
{
    while(tail - front >= 2)
        if(GetSlope(q[front + 1],q[front + 2]) < slope)
            ++front;
        else    break;
    return q[front + 1];
}
 
int main()
{
    cin >> cnt;
    for(int i = 1; i <= cnt; ++i)
        scanf("%lld",&cost[i]);
    for(int i = 1; i <= cnt; ++i) {
        scanf("%lld",&src[i]);
        sum[i] = sum[i - 1] + src[i];
        _sum[i] = _sum[i - 1] + src[i] * i;
    }
    for(int i = 1; i <= cnt; ++i) {
        Insert(sum[i - 1],f[i - 1] + _sum[i - 1]);
        Point ans = GetAns(i);
        f[i] = ans.y + (sum[i] - ans.x) * i - _sum[i] + cost[i];
    }
    cout << f[cnt] << endl;
    return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值