题目大意:有一些操作,给一个坐标代表的点加上一个数,和求出一个矩形中的所有数的和。
思路:一眼题,二位树状数组水过。
。。。
。。
。
哪里不对?W<=2000000.逗我?这n^2能开下?
这个时候CDQ神牛又来帮助我们了。
这个题应该算是CDQ分治的模板题了吧,简单分析一下,其实不难。
写这个题之前建议写一下BZOJ 1935 SHOI 2007 Tree 园丁的烦恼 树状数组这个题,是本题的简化版。
按照正常的解法,我们应该建立一个二位的数据结构,然后分别维护两维的信息。如果用动态开点的线段树的话或许会卡过去,但是写过二维线段树的都应该知道。。这可不像二位树状数组那么好写。。
所以我们想办法缩掉一维,让这个问题变成一维的问题。把加权值和询问都看成是操作,一个询问操作拆成4个,然后将这些操作按照x坐标排序。CDQ分治的过程中,我们保证时刻x有序,更新答案的时候保证前半部分的标号小于后半部分。然后每次处理完[l,mid]之后,用[l,mid]中的加权值操作更新[mid + 1,r]中的询问操作。
CODE:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 2000010
#define INF 0x3f3f3f3f
using namespace std;
struct Complex{
int flag;
int x,y,c;
int id,ans;
bool operator <(const Complex &a)const {
return x < a.x;
}
}src[MAX],t[MAX];
int asks,cnt,size;
int fenwick[MAX],T,v[MAX];
inline void Fix(int x,int c)
{
for(; x <= size; x += x&-x) {
if(v[x] != T) v[x] = T,fenwick[x] = 0;
fenwick[x] += c;
}
}
inline int GetSum(int x)
{
int re = 0;
for(; x; x -= x&-x)
if(v[x] == T)
re += fenwick[x];
return re;
}
void CDQ(int l,int r)
{
if(l == r) return ;
int mid = (l + r) >> 1;
int l1 = l,l2 = mid + 1;
for(int i = l; i <= r; ++i)
if(src[i].id <= mid)
t[l1++] = src[i];
else t[l2++] = src[i];
memcpy(src + l,t + l,sizeof(Complex) * (r - l + 1));
CDQ(l,mid);
++T;
int now = l;
for(int i = mid + 1; i <= r; ++i) {
while(src[now].x <= src[i].x && now <= mid) {
if(src[now].flag == 1)
Fix(src[now].y,src[now].c);
++now;
}
if(src[i].flag == 2)
src[i].ans += GetSum(src[i].y);
}
CDQ(mid + 1,r);
l1 = l,l2 = mid + 1;
for(int i = l; i <= r; ++i)
if((src[l1] < src[l2] && l1 <= mid) || l2 > r)
t[i] = src[l1++];
else t[i] = src[l2++];
memcpy(src + l,t + l,sizeof(Complex) * (r - l + 1));
}
bool cmp(const Complex &a,const Complex &b)
{
return a.id < b.id;
}
int main()
{
scanf("%*d%d",&size);
int flag,x1,y1,x2,y2;
while(scanf("%d",&flag),flag^3) {
if(flag == 1) {
src[++cnt].flag = 1,src[cnt].id = cnt;
scanf("%d%d%d",&src[cnt].x,&src[cnt].y,&src[cnt].c);
}
else {
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
src[++cnt].flag = 2,src[cnt].id = cnt;
src[cnt].x = x2,src[cnt].y = y2,src[cnt].c = INF;
src[++cnt].flag = 2,src[cnt].id = cnt;
src[cnt].x = x1 - 1,src[cnt].y = y2,src[cnt].c = INF;
src[++cnt].flag = 2,src[cnt].id = cnt;
src[cnt].x = x2,src[cnt].y = y1 - 1,src[cnt].c = INF;
src[++cnt].flag = 2,src[cnt].id = cnt;
src[cnt].x = x1 - 1,src[cnt].y = y1 - 1,src[cnt].c = INF;
}
}
sort(src + 1,src + cnt + 1);
CDQ(1,cnt);
sort(src + 1,src + cnt + 1,cmp);
for(int i = 1; i <= cnt; ++i)
if(src[i].flag == 2) {
int ans = 0;
ans += src[i++].ans;
ans -= src[i++].ans;
ans -= src[i++].ans;
ans += src[i].ans;
printf("%d\n",ans);
}
return 0;
}