【最长上升子序列】序列 sequence

序列

sequence.pas/c/cpp

1S/256MB

【题目描述】

       一个数的序列B=(b1 , b2 , ... , bS),当b1 < b2 < ...< bS 的时候,我们称这个序列是上升的。对于给定的一个序列A=(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... <iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。你的任务,就是对于给定的序列,求出最长上升子序列的长度。

【输入】

输入文件:sequence.in

输入的第一行包括一个整数,N。表示序列的长度。

第二行包括N 个互不相同的整数,即给定的序列。

【输出】

输入文件:sequence.out

输出为一行,包含一个整数。表示最长上升子序列的长度。

【输入样例】

7

1 7 3 5 9 4 8

【输出样例】

4

【数据范围】

     对于100%的数据,1<=N<=1000,序列中的每个整数的取值范围是[0,10000]。

 

 


 

题目意思很明确,是让我们求一个最大上升子序列


O(n2)的方程  f[i]=max(f[i],f[j]+1);    j=1 ~ i-1


O(nlog2n)的方法  用二分优化,具体就不说了,自己可以去百度一下方法



下面给出O(nlog2n)的代码

C++ Code

/*
C++ Code
http://blog.csdn.net/jiangzh7
By Jiangzh
*/
#include<cstdio>
#include<algorithm>
using namespace std;

const int MAXN=1000+10;

int n,a[MAXN];
int c[MAXN];
int len=0;

void read()
{
	freopen("sequence.in","r",stdin);
	freopen("sequence.out","w",stdout);
	
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
}

int find(int x)
{
	int l=1,r=len,mid;
	while(l<=r)
	{
		mid=(l+r)>>1;
		if(x>c[mid]) l=mid+1;
		else r=mid-1;
	}
	return l;
}

void work()
{
	for(int i=1;i<=n;i++)
	{
		int k=find(a[i]);
		c[k]=a[i];
		len=max(len,k);
	}
	printf("%d",len);
}

int main()
{
	read();
	work();
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值