ufldf深度学习
文章平均质量分 87
jianjian1992
hahaha
展开
-
softMax(2)---predict实现
softMax的cost写好之后,模型也就可以正式开始进行训练了。 首先要把softMaxExercise里边的Debug赋值为false,可以看到,梯度检验这一步在正式训练过程中是完全不需要做的。softMax模型softMax的模型是什么样的呢? 假设一共有k个类,那么对于样本x(i)x^{(i)},预测它属于第j类的概率如下 p(y=j|x(i))=eθTj∗x(i)∑kl=1θTl∗x原创 2015-10-18 11:29:27 · 1222 阅读 · 0 评论 -
softmaxCost实现
本次练习是按照ufldl SoftMax进行实现的。 关于代价函数的由来可以看看《统计学习方法》里边的logistic回归那一章,因为logistic模型是概率模型,所以会使用似然函数,优化也就是最大化似然函数,代价便是-log似然函数,最后的目标也就是最小化代价函数了。 不过由代价函数到它的导数这一部分的推导我开始没想明白,所以下面对此做个记录,看看到底是如何求导的。推导 J(θ)=−1m[原创 2015-10-16 21:25:09 · 1123 阅读 · 1 评论 -
ufldl.PCA-2D实现
Step 0: Load data用文本方式打开pcaData.txt,看到的就是两行数据,每行有45个值。 不加’-ascii’,直接写出x=load(‘pcaData.txt’)也是ok 的! figure(1)表明建立第一幅图像,在需要显示很多图像的时候就需要用到这一句了。 scatter则是画图函数,这里的x轴数据为x的第一行数据x(1,:),y轴数据为x的第二行数据x(2,:)。原创 2015-10-31 15:22:38 · 554 阅读 · 0 评论 -
caffe使用记录
版本说明: caffe为windows版本,vs对应的是2012版本,我是用生成exe+windows批处理的方式来使用caffe的。 已经配置好的caffe可见http://pan.baidu.com/s/1gf0iTKB 使用的并不是最新版的caffe,不过在windows下算是很新的啦。数据生成首先生成训练和测试目录,我是以人脸的CMU数据库为例进行说明。下面的名字可以根据自己需要进行修原创 2016-06-02 20:44:50 · 3923 阅读 · 0 评论