项目实训41 组长个人工作总结1

一,调研学习构建DDD架构

与小组组员程前一起调研学习了前端的DDD架构并实际应用到了项目上。

因为之前开发的项目比较简单,可以采用普通的MVC架构模式。但是针对功能较多数据量大较为复杂的项目而言,我们一致觉得DDD架构是低耦合,便于修改测试的,便于开发大项目的合适的架构。因此尽管有一定上手难度,我们调研学习并创新改造了六边形架构(api,app,domain,infrastructure,trigger,type六个模块,分别负责对接接口,应用配置,领域服务设计,基层设计,触发器和基础类型构建)并应用到了我们的项目上。

感悟尽管刚开始上手的时候对诸多文件名有所疑问,尤其是在学习动态配置和规则树,责任链的时候更是觉得晦涩难懂。但是当充分理解了之后,整个项目架构,什么功能在什么地方,什么文件是管理什么的非常清晰,一目了然。并且想要单独领出一个模块进行检测也十分方便,比如我们就对编写好的数据库方法进行了测试,成功找到并解决了一些问题。

二,数据库设计

针对我们的病患病情分析,病历记录,感知训练,运动训练主要功能,进行了系统合理的数据库设计。充分考虑到了

1.各数据的关键要素和数据之间的依赖关系

2.范式化,确保数据原子性

3.合理的反范式保留合理的查询索引,避免连表查询

暂时先设计了十个数据库表包含主键,外键,索引键。(在项目博客1中有,本文最后也会放一份)

并与组员一起应用到了项目上并且成功测试。

感悟:数据库设计看似都是一些基础的属性,但其实是一个非常考验细心,严谨的工作,比如患者id和患者信息表的id要不要用一个id。我们经过讨论决定采用两个id。因为实际情况中医院所记录的患者的id可能会较长并且有特殊意义(比如代表什么科室)不适宜作为项目的索引来进行查找。因此用自增id作为表的id。再者什么属性可以作为索引,什么属性作为外键,什么属性是冗余属性也都需要细细敲定。在我们的DDD架构中,采用entity和VO来进行值传输,可以将表化整为零,并且因此数据库的修改,不影响我们的服务方法架构。这也是我们架构的优点。尽管如此我们的表仍不完善,会随着开发进行修改完善。

三,大模型微调学习

1.深度学习模型基础学习

学习了模型训练的原理,包括了解数据集,各种线性层,卷积层,池化,归一,dropout的作用。学习率,修正函数,根据epoch调整学习率(如指数下降,三角函数下降等)。

2.针对性调研

我们针对医疗专业领域和心理医疗领域找到了两个数据集。以此来适配我们的产品目标

针对患者的心理医疗需求调研了EmoLLM-database数据集,使得大模型能够以医生的口吻来回答我们的问题。

针对专业医疗需求,调研了medical-o1-reasoning-SFT进行数据训练。使模型在医疗对话中更加专业。

感悟:以前觉得大模型是真有人类的思维,学习后才知道所谓ai思考不过是凑数据凑出来的。AI训练,深度学习的门槛可能并没有那么高,但是能扩展深入的角度相当广阔。之后的开发过程中探究学习率,学习率下降,损失函数,修正函数对模型微调的影响都是可行的方案。

四,附录

​​1. 患者信息表 (Patient_Info)​​

字段名

类型

说明

示例

patient_id

VARCHAR(36)

患者唯一标识(UUID)

"a1b2c3d4-..."

name

VARCHAR(50)

姓名

张三

gender

CHAR(1)

性别(M/F/O)

M

age

INT

年龄

72

contact

VARCHAR(20)

紧急联系人电话

138​​​​5678

medical_history

TEXT

病史摘要(如高血压、糖尿病等)

"2018年确诊AD,无卒中史"

medication

JSON

当前用药记录(支持动态扩展)

{"药物":"多奈哌齐", "剂量":"5mg/d"}


​​2.量表评分表 (Assessment_Scores)​​

字段名

类型

说明

示例

assessment_id

VARCHAR(36)

评估唯一ID

"b5e6f7g8-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

assessment_type

VARCHAR(20)

量表类型(MMSE/CDR/ADAS-Cog)

"MMSE"

score_details

JSON

结构化评分(支持动态量表)

{"总分":18, "定向力":5}

assessment_date

DATE

评估日期

2024-03-15

​​3. 影像资料表 (Imaging_Data)​​

字段名

类型

说明

示例

image_id

VARCHAR(36)

影像唯一ID

"c9d0e1f2-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

modality

VARCHAR(20)

影像类型(MRI/PET/CT)

"MRI"

findings

JSON

结构化报告(自动提取关键指标)

{"海马体体积": "2.1cm³", "Aβ沉积": "阳性"}

file_path

VARCHAR(200)

影像文件存储路径(加密链接)

"/images/a1b2c3d4/mri_20240315.dcm"

​​4. 血液检查表 (Blood_Tests)​​

字段名

类型

说明

示例

test_id

VARCHAR(36)

检查唯一ID

"d3e4f5g6-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

biomarker_type

VARCHAR(30)

生物标志物类型

"Aβ42"

value

FLOAT

检测数值

450.5

unit

VARCHAR(10)

单位

"pg/mL"

test_date

DATE

检测日期

2024-03-10


5. DeepSeek认知训练表 (Cognitive_Training)​​

字段名

类型

说明

示例

plan_id

VARCHAR(36)

计划唯一ID

"e7f8g9h0-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

training_type

VARCHAR(50)

训练类型(记忆/注意力/定向力)

"空间记忆训练"

difficulty_level

INT

难度等级(1-5级)

3

content

TEXT

训练内容描述(支持多媒体链接)

"虚拟超市购物任务(链接:training_001)"

schedule

JSON

执行计划(频率、时长)

{"频率":"5次/周", "单次时长":"30分钟"}

6. 运动计划表 (Exercise_Plans)​​

字段名

类型

说明

示例

exercise_id

VARCHAR(36)

计划唯一ID

"h1i2j3k4-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

exercise_type

VARCHAR(50)

运动类型(有氧/平衡/柔韧)

"太极拳"

intensity

VARCHAR(20)

强度(低/中/高)

"中等"

duration

INT

单次时长(分钟)

45

safety_rules

TEXT

禁忌症和注意事项

"避免快速转身,家属陪同"


7.训练记录表 (Training_Records)​​

字段名

类型

说明

示例

record_id

VARCHAR(36)

记录唯一ID

"k5l6m7n8-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

plan_id

VARCHAR(36)

关联训练计划ID

"e7f8g9h0-..."

completion_rate

FLOAT

完成度(0-100%)

85.0

performance

JSON

动态指标(如反应时间、错误率)

{"反应时间": "2.3s", "正确率": "78%"}

record_date

DATE

执行日期

2024-03-20

8. 运动记录表 (Exercise_Records)​​

字段名

类型

说明

示例

record_id

VARCHAR(36)

记录唯一ID

"n9o0p1q2-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

exercise_id

VARCHAR(36)

关联运动计划ID

"h1i2j3k4-..."

heart_rate

INT

平均心率

102

calories

FLOAT

消耗卡路里

250.5

notes

TEXT

异常情况记录

"中途头晕,休息5分钟后继续"

​ 9. 患者病史表 (Exercise_Records)​​

字段名

类型

说明

示例

history_id

VARCHAR(36)

病史记录唯一ID

"h1i2j3k4-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

diagnosis_date

DATE

诊断日期(支持时间序列分析)

2020-05-10

condition_name

VARCHAR(100)

疾病名称(标准化ICD-11编码)

"阿尔茨海默病 (ICD-11: 6D85)"

treatment_summary

TEXT

治疗措施(手术/药物/物理治疗等)

"口服多奈哌齐5mg/d"

medical_notes

TEXT

备注(并发症、疗效、副作用等)

"2021年出现轻度肝功能异常"

 10. 患者用药历史表 (Exercise_Records)

字段名

类型

说明

示例

medication_id

VARCHAR(36)

用药记录唯一ID

"m5n6o7p8-..."

patient_id

VARCHAR(36)

关联患者ID

"a1b2c3d4-..."

medication_name

VARCHAR(100)

药物名称(通用名,如多奈哌齐)

"多奈哌齐"

dosage

VARCHAR(50)

剂量与用法

"5mg 口服,每日一次"

medication_start

DATE

开始用药日期

2020-05-15

medication_end

DATE

结束用药日期(NULL表示持续使用)

NULL

prescription_by

VARCHAR(50)

处方医生

"李华(神经内科)"

文章只用于自我记录和课程检查,无其它目的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值