R语言 - 混淆矩阵 - 分类器诊断

混淆矩阵用于评估分类器性能,通过真阳性(TP)、假阳性(FP)、真阴性(TN)和假阴性(FN)等指标。在示例中,模型的精确度为90%,真阳性率(召回率)为27.3%,假阳性率为2.2%,假阴性率为72.7%。高TPR和低FPR/FNR表示模型性能好。
摘要由CSDN通过智能技术生成
#混淆矩阵(confusion matrix)是一种特别定的表格布局,可以可视化分类器的性能

预测分类
阳性 阴性
阳性 真阳性TP伪阳性FN
实际分类 阴性 伪阴性FP真阴性TN

#利用100个实例训练集
预测分类
签约 不签约 总计
签约 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值