混淆矩阵(confusionMatrix)——基于R语言的输出结果理解

本文深入探讨了混淆矩阵的基本概念及其在R语言中的应用,详细解析了混淆矩阵中的各项参数,包括准确度、kappa值及P值的含义与计算方法。通过实例演示如何使用R语言的confusionMatrix函数来生成并解读混淆矩阵,为机器学习模型的性能评估提供了实用指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混淆矩阵的基本理解

以R语言输出结果为例
在这里插入图片描述
从下图理解混淆矩阵中个字母含义
在这里插入图片描述
准确度的理解
在这里插入图片描述
kappa值的理解及P值的理解,,,希望大神指教
在这里插入图片描述
各参数的解释
在这里插入图片描述
当进行结果提取时

##计算的混淆矩阵
pls.cmx <- confusionMatrix(data = pls_predicting, test$type)
结果提取
pls.cmx$byClass

提取各参数含义
在这里插入图片描述

计算公式在这里插入图片描述
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值