.torch.save与torch.jit.save

1.torch.jit.save

torch.jit.save用来保存编译后的模型,支持跨平台,要注意模型中只能使用pytorch的函数。

jit.save支持保存script类型和trace类型的模型,其中script为全量模型,trace为仅保存运行过的路径

2.torch.save

torch.save有三种使用场景,参考:https://stackoverflow.com/questions/42703500/best-way-to-save-a-trained-model-in-pytorch

1.保存模型用来做测试

torch.save(model.state_dict(), filepath)
#Later to restore:
model.load_state_dict(torch.load(filepath))
model.eval()

2.用来恢复训练状态

state = {
    'epoch': epoch,
    'state_dict': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    ...
}
torch.save(state, filepath)
#later
model.load_state_dict(state['state_dict'])
optimizer.load_state_dict(state['optimizer'])

Since you are resuming training, DO NOT call model.eval() once you restore the states when loading.

3.用来给不不知道你的网络结构的人使用

torch.save(model, filepath)
# Then later:
model = torch.load(filepath)

This way is still not bullet proof and since pytorch is still undergoing a lot of changes, I wouldn’t recommend it.

torch.jit.trace和torch.jit.script是PyTorch的两种模型序列化工具,用于将PyTorch模型序列化为可保存和加载的文件格式。它们的使用方法如下: 1. torch.jit.trace torch.jit.trace用于将PyTorch模型转换为TorchScript,可以使得模型在C++中运行。使用方法如下: ```python import torch # 定义模型 class MyModel(torch.nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.relu = torch.nn.ReLU() self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc = torch.nn.Linear(32 * 32 * 32, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.relu(x) x = x.view(-1, 32 * 32 * 32) x = self.fc(x) return x # 实例化模型 model = MyModel() # 定义输入数据 input_data = torch.rand(1, 3, 64, 64) # 将模型转换为TorchScript traced_model = torch.jit.trace(model, input_data) # 保存TorchScript模型 traced_model.save('my_model.pt') ``` 2. torch.jit.script torch.jit.script用于将PyTorch模型转换为TorchScript,可以使得模型在C++中运行。使用方法如下: ```python import torch # 定义模型 class MyModel(torch.nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.relu = torch.nn.ReLU() self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc = torch.nn.Linear(32 * 32 * 32, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.relu(x) x = x.view(-1, 32 * 32 * 32) x = self.fc(x) return x # 实例化模型 model = MyModel() # 定义输入数据 input_data = torch.rand(1, 3, 64, 64) # 将模型转换为TorchScript scripted_model = torch.jit.script(model) # 保存TorchScript模型 scripted_model.save('my_model.pt') ``` 以上是torch.jit.trace和torch.jit.script的使用方法。需要注意的是,如果模型中使用了一些Python特性或库,如if语句、for循环等,则只能使用torch.jit.script进行转换,而不能使用torch.jit.trace。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值