在计算机图形学中,三维图形的变换是实现复杂视觉效果的基础。本文将详细介绍三维图形的平移、缩放和旋转的原理,并提供相应的代码实现。
平移(Translation)
原理
平移是指在三维空间中沿着某个方向移动图形。对于一个点 P ( x , y , z ) P(x, y, z) P(x,y,z),如果我们想将其平移到新的位置 P ′ ( x ′ , y ′ , z ′ ) P'(x', y', z') P′(x′,y′,z′),我们可以通过添加一个平移向量 T ( a , b , c ) T(a, b, c) T(a,b,c)来实现。平移的数学表达式为:
P ′ = P + T ( x ′ , y ′ , z ′ ) = ( x + a , y + b , z + c ) \begin{aligned} P' &= P + T\\ (x', y', z')&=(x + a, y + b, z + c) \end{aligned} P′(x′,y′,z′)=P+T=(x+a,y+b,z+c)
代码实现
import numpy as np
def translate(point, translation):
"""
平移一个3D点,根据给定的平移向量。
:param point: 一个3D点,表示为numpy数组 [x, y, z]。
:param translation: 一个平移向量,表示为numpy数组 [a, b, c]。
:return: 平移后的点。
"""
# 通过将点和平移向量相加来实现平移
return point + translation
# 示例用法:
# 定义一个3D点
point = np.array([1, 2, 3])
# 定义一个平移向量
translation = np.array([4, 5, 6])
# 调用translate函数进行平移
translated_point = translate(point, translation)
# 打印平移后的点
print("平移后的点:", translated_point)
缩放(Scaling)
原理
缩放是指改变图形的大小。对于一个点 P ( x , y , z ) P(x, y, z) P(x,y,z),如果我们想将其缩放到新的大小 P ′ ( x ′ , y ′ , z ′ ) P'(x', y', z') P′(x′,y′,z′),我们可以通过乘以一个缩放因子向量 S ( s x , s y , s