计算机图形学:三维图形的平移、缩放和旋转


在计算机图形学中,三维图形的变换是实现复杂视觉效果的基础。本文将详细介绍三维图形的平移、缩放和旋转的原理,并提供相应的代码实现。

平移(Translation)

原理

平移是指在三维空间中沿着某个方向移动图形。对于一个点 P ( x , y , z ) P(x, y, z) P(x,y,z),如果我们想将其平移到新的位置 P ′ ( x ′ , y ′ , z ′ ) P'(x', y', z') P(x,y,z),我们可以通过添加一个平移向量 T ( a , b , c ) T(a, b, c) T(a,b,c)来实现。平移的数学表达式为:

P ′ = P + T ( x ′ , y ′ , z ′ ) = ( x + a , y + b , z + c ) \begin{aligned} P' &= P + T\\ (x', y', z')&=(x + a, y + b, z + c) \end{aligned} P(x,y,z)=P+T=(x+a,y+b,z+c)

代码实现

import numpy as np

def translate(point, translation):
    """
    平移一个3D点,根据给定的平移向量。
    
    :param point: 一个3D点,表示为numpy数组 [x, y, z]。
    :param translation: 一个平移向量,表示为numpy数组 [a, b, c]。
    :return: 平移后的点。
    """
    # 通过将点和平移向量相加来实现平移
    return point + translation

# 示例用法:
# 定义一个3D点
point = np.array([1, 2, 3])
# 定义一个平移向量
translation = np.array([4, 5, 6])
# 调用translate函数进行平移
translated_point = translate(point, translation)
# 打印平移后的点
print("平移后的点:", translated_point)

缩放(Scaling)

原理

缩放是指改变图形的大小。对于一个点 P ( x , y , z ) P(x, y, z) P(x,y,z),如果我们想将其缩放到新的大小 P ′ ( x ′ , y ′ , z ′ ) P'(x', y', z') P(x,y,z),我们可以通过乘以一个缩放因子向量 S ( s x , s y , s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艰默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值