计算机图形学:计算点与线段的距离、投影和位置关系

引言

在计算机图形学、几何计算和物理模拟等领域,经常需要计算一个点到线段的距离、投影和位置关系。这些计算可以帮助我们确定点是否在线段上、点到线段的最短距离、以及点相对于线段的位置等信息。本文将详细介绍如何进行这些计算的理论推导,并提供相应的代码实现。

理论推导

1. 点到线段的距离

给定点 P ( x , y ) P(x, y) P(x,y)和线段 A B AB AB,其中 A ( x 1 , y 1 ) A(x1, y1) A(x1,y1) B ( x 2 , y 2 ) B(x2, y2) B(x2,y2)。我们首先计算向量 A P AP AP A B AB AB
A P ⃗ = ( x − x 1 , y − y 1 ) A B ⃗ = ( x 2 − x 1 , y 2 − y 1 ) \begin{aligned} \vec{AP} &= (x - x_1, y - y_1)\\ \vec{AB} &= (x_2 - x_1, y_2 - y_1) \end{aligned} AP AB =(xx1,yy1)=(x2x1,y2y1)
点P到线段AB的距离d可以通过向量叉乘的模除以向量AB的模来计算:

d = ∣ A P ⃗ × A B ⃗ ∣ ∣ A B ⃗ ∣ d = \frac{|\vec{AP} \times \vec{AB}|}{|\vec{AB}|} d=AB AP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艰默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值