引言
在计算机图形学、几何计算和物理模拟等领域,经常需要计算一个点到线段的距离、投影和位置关系。这些计算可以帮助我们确定点是否在线段上、点到线段的最短距离、以及点相对于线段的位置等信息。本文将详细介绍如何进行这些计算的理论推导,并提供相应的代码实现。
理论推导
1. 点到线段的距离
给定点 P ( x , y ) P(x, y) P(x,y)和线段 A B AB AB,其中 A ( x 1 , y 1 ) A(x1, y1) A(x1,y1)和 B ( x 2 , y 2 ) B(x2, y2) B(x2,y2)。我们首先计算向量 A P AP AP和 A B AB AB:
A P ⃗ = ( x − x 1 , y − y 1 ) A B ⃗ = ( x 2 − x 1 , y 2 − y 1 ) \begin{aligned} \vec{AP} &= (x - x_1, y - y_1)\\ \vec{AB} &= (x_2 - x_1, y_2 - y_1) \end{aligned} APAB=(x−x1,y−y1)=(x2−x1,y2−y1)
点P到线段AB的距离d可以通过向量叉乘的模除以向量AB的模来计算:
d = ∣ A P ⃗ × A B ⃗ ∣ ∣ A B ⃗ ∣ d = \frac{|\vec{AP} \times \vec{AB}|}{|\vec{AB}|} d=∣AB∣∣AP