【深度学习】Python实现强化学习算法(源码)

  

目录

REINFORCE的工作原理

REINFORCE算法实现 (Python)

步骤1:设置环境

步骤2:定义超参数

步骤3:定义策略网络

步骤4:初始化策略和优化器

步骤5:计算回报

步骤6:定义训练步骤

步骤7:训练循环

步骤8:测试训练好的智能体

REINFORCE的优点

REINFORCE的挑战

REINFORCE的变体

REINFORCE算法的应用


        REINFORCE是强化学习中用于改进决策方式的一种方法。它通过尝试各种行动,然后根据随后获得的总奖励来调整这些行动的概率进行学习。

        与其他估计每个行动有多好的方法不同,REINFORCE直接学习选择行动的最佳方式。这使得它在存在许多可能行动或连续选择,以及难以估计每个行动价值的任务中特别有用。

REINFORCE的工作原理

REINFORCE算法按以下步骤工作:

  • 收集情节:智能体根据当前策略与环境进行固定步数的交互,或直到一个情节结束。这会生成一个由状态、行动和奖励组成的轨迹。
  • 计算回报:对于每个时间步$t$,计算回报$G_t$,它是从时间$t$开始获得的总奖励。通常,这是奖励的折扣总和:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值